『壹』 有沒有講linux源代碼的視頻
有的 英文版的
『貳』 求這個網站的linux內核視頻,不知道能不能搞到
如果你對Linux內核不是很熟悉的話,而且你時間相對充足,那就可以看看Linux內核編程,比看書要快的多.你可以看完了再去看看書.如果時間不是很充足的話,那麼看很耗時間的,建議你看毛德操的linux源代碼情景分析這本書.其實市場上很多的,只需要自己努力看完一套就行了,寧缺毋濫.
『叄』 如何讀懂linux內核源碼
Linux的內核源代碼可以從很多途徑得到。一般來講,在安裝的linux系統下,/usr/src/linux目錄下的東西就是內核源代碼。
對於源代碼的閱讀,要想比較順利,事先最好對源代碼的知識背景有一定的了解。對於linux內核源代碼來講,我認為,基本要求是:1、操作系統的基本知識; 2、對C語言比較熟悉,最好要有匯編語言的知識和GNU C對標准C的擴展的知識的了解。
另外在閱讀之前,還應該知道Linux內核源代碼的整體分布情況。我們知道現代的操作系統一般由進程管理、內存管理、文件系統、驅動程序、網路等組成。看一下Linux內核源代碼就可看出,各個目錄大致對應了這些方面。Linux內核源代碼的組成如下(假設相對於linux目錄):
arch 這個子目錄包含了此核心源代碼所支持的硬體體系結構相關的核心代碼。如對於X86平台就是i386。
include 這個目錄包括了核心的大多數include文件。另外對於每種支持的體系結構分別有一個子目錄。
init 此目錄包含核心啟動代碼。
mm 此目錄包含了所有的內存管理代碼。與具體硬體體系結構相關的內存管理代碼位於arch/-/mm目錄下,如對應於X86的就是arch/i386/mm/fault.c 。
drivers 系統中所有的設備驅動都位於此目錄中。它又進一步劃分成幾類設備驅動,每一種也有對應的子目錄,如音效卡的驅動對應於drivers/sound。
ipc 此目錄包含了核心的進程間通訊代碼。
moles 此目錄包含已建好可動態載入的模塊。
fs Linux支持的文件系統代碼。不同的文件系統有不同的子目錄對應,如ext2文件系統對應的就是ext2子目錄。
kernel 主要核心代碼。同時與處理器結構相關代碼都放在arch/-/kernel目錄下。
net 核心的網路部分代碼。裡面的每個子目錄對應於網路的一個方面。
lib 此目錄包含了核心的庫代碼。與處理器結構相關庫代碼被放在arch/-/lib/目錄下。
scripts 此目錄包含用於配置核心的腳本文件。
Documentation 此目錄是一些文檔,起參考作用。
『肆』 Linux內核源代碼解讀!!
#在as86匯編器里代表立即數的意思
jmpi是段間跳轉jmpi a,b里的a是所要跳轉到的段里的偏移量,b是所要跳轉的段地址
『伍』 怎樣學習並研究LINUX的源碼
學習linux最好也最值得去學的是源碼分析,因為只有做好了這項工作,才能搞操作系統,尤其是嵌入式系統——一個現在包括以後的很長一段時間內會是一個很熱門的東西。可以說LINUx是中國的系統軟體,包括嵌入式系統,開發自己的系統,在計算機領域打出一片自己的天下的很好的契機。
有一本書很值得一看,是趙炯的《Linux內核完全注釋》,我有電子版本,但太大了,如果你需要可以給我發信息。我可以傳給你。不過我還是喜歡看紙版的書,因此我又買了一本。
你也可以去買一本,相信我,這本書很值得買的。
『陸』 怎樣讀Linux內核源代碼
對於源代碼的閱讀,要想比較順利,事先最好對源代碼的知識背景有一定的了解。對於linux內核源代碼來講,我認為,基本要求是:1、操作系統的基本知識;2、對C語言比較熟悉,最好要有匯編語言的知識和GNU C對標准C的擴展的知識的了解。另外在閱讀之前,還應該知道Linux內核源代碼的整體分布情況。我們知道現代的操作系統一般由進程管理、內存管理、文件系統、驅動程序、網路等組成。看一下Linux內核源代碼就可看出,各個目錄大致對應了這些方面。
『柒』 Linux內核源碼解析-list.h
開頭就說明了這里的 list.h 文件來自 Linux Kernel ( */include/linux/list.h ),只是去除了列表項的硬體預載入部分。
進行宏替換後就是
Note: 沒搞懂這里為什麼加個 osn 前綴,原本是 list_add ,現在是 osn_list_add 。
可以看到就是個簡單的鏈表節點刪除過程,同時把刪除節點的前後指針設為無法訪問。
刪除節點後初始化,前後指針都指向自己
從A鏈表刪除後頭插法插入B鏈表
從A鏈表刪除後尾插法插入B鏈表
先對 list 判空,非空就把 list 鏈表除頭節點外裁剪到 head 頭節點在的鏈表中。函數不安全, list 節點可以繼續訪問其他節點。
多了一步 list 重新初始化的過程。
(unsigned long)(&((type *)0)->member))) 將0x0地址強制轉換為 type * 類型,然後取 type 中的成員 member 地址,因為起始地址為0,得到的 member 的地址就直接是該成員相對於 type 對象的偏移地址了。
所以該語句的功能是:得到 type 類型對象中 member 成員的地址偏移量。
先將 ptr 強制轉換為 char * 類型(因為 char * 類型進行加減的話,加減量為 sizeof(char)*offset , char 佔一個位元組空間,這樣指針加減的步長就是1個位元組,實現加一減一。)
整句話的意思就是:得到指向 type 的指針,已知成員的地址,然後減去這個成員相對於整個結構對象的地址偏移量,得到這個數據對象的地址。
就是從前往後,從後往前的區別
Note: 從head節點開始(不包括head節點!)遍歷它的每一個節點!它用n先將下一個要遍歷的節點保存起來,防止刪除本節點後,無法找到下一個節點,而出現錯誤!
已知指向某個結構體的指針pos,以及指向它中member成員的指針head,從下一個結構體開始向後遍歷這個結構體鏈
Note: 同理,先保存下一個要遍歷的節點!從head下一個節點向後遍歷鏈表。
list.h使用說明
linux內核list.h分析(一)
linux內核list.h分析(二)
【Linux內核數據結構】最為經典的鏈表list
『捌』 LINUX的源代碼是什麼
Linux 的源代碼就是 Linux 的源代碼……
Linux 的源代碼 != Linux 的內核源代碼。
一般所說的 Linux ,是指一整套 GNU/Linux 套件的。
『玖』 求一段Linux操作系統源代碼分析
Linux內核的配置系統由三個部分組成,分別是:
Makefile:分布在 Linux 內核源代碼中的 Makefile,定義 Linux 內核的編譯規則;
配置文件(config.in):給用戶提供配置選擇的功能;
配置工具:包括配置命令解釋器(對配置腳本中使用的配置命令進行解釋)和配置用戶界面(提供基於字元界面、基於 Ncurses 圖形界面以及基於 Xwindows 圖形界面的用戶配置界面,各自對應於 Make config、Make menuconfig 和 make xconfig)。
這些配置工具都是使用腳本語言,如 Tcl/TK、Perl 編寫的(也包含一些用 C 編寫的代碼)。本文並不是對配置系統本身進行分析,而是介紹如何使用配置系統。所以,除非是配置系統的維護者,一般的內核開發者無須了解它們的原理,只需要知道如何編寫 Makefile 和配置文件就可以。所以,在本文中,我們只對 Makefile 和配置文件進行討論。另外,凡是涉及到與具體 CPU 體系結構相關的內容,我們都以 ARM 為例,這樣不僅可以將討論的問題明確化,而且對內容本身不產生影響。
2. Makefile
2.1 Makefile 概述
Makefile 的作用是根據配置的情況,構造出需要編譯的源文件列表,然後分別編譯,並把目標代碼鏈接到一起,最終形成 Linux 內核二進制文件。
由於 Linux 內核源代碼是按照樹形結構組織的,所以 Makefile 也被分布在目錄樹中。Linux 內核中的 Makefile 以及與 Makefile 直接相關的文件有:
Makefile:頂層 Makefile,是整個內核配置、編譯的總體控制文件。
.config:內核配置文件,包含由用戶選擇的配置選項,用來存放內核配置後的結果(如 make config)。
arch/*/Makefile:位於各種 CPU 體系目錄下的 Makefile,如 arch/arm/Makefile,是針對特定平台的 Makefile。
各個子目錄下的 Makefile:比如 drivers/Makefile,負責所在子目錄下源代碼的管理。
Rules.make:規則文件,被所有的 Makefile 使用。
用戶通過 make config 配置後,產生了 .config。頂層 Makefile 讀入 .config 中的配置選擇。頂層 Makefile 有兩個主要的任務:產生 vmlinux 文件和內核模塊(mole)。為了達到此目的,頂層 Makefile 遞歸的進入到內核的各個子目錄中,分別調用位於這些子目錄中的 Makefile。至於到底進入哪些子目錄,取決於內核的配置。在頂層 Makefile 中,有一句:include arch/$(ARCH)/Makefile,包含了特定 CPU 體系結構下的 Makefile,這個 Makefile 中包含了平台相關的信息。
位於各個子目錄下的 Makefile 同樣也根據 .config 給出的配置信息,構造出當前配置下需要的源文件列表,並在文件的最後有 include $(TOPDIR)/Rules.make。
Rules.make 文件起著非常重要的作用,它定義了所有 Makefile 共用的編譯規則。比如,如果需要將本目錄下所有的 c 程序編譯成匯編代碼,需要在 Makefile 中有以下的編譯規則:
%.s: %.c
$(CC) $(CFLAGS) -S $< -o $@
有很多子目錄下都有同樣的要求,就需要在各自的 Makefile 中包含此編譯規則,這會比較麻煩。而 Linux 內核中則把此類的編譯規則統一放置到 Rules.make 中,並在各自的 Makefile 中包含進了 Rules.make(include Rules.make),這樣就避免了在多個 Makefile 中重復同樣的規則。對於上面的例子,在 Rules.make 中對應的規則為:
%.s: %.c
$(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(CFLAGS_$(*F)) $(CFLAGS_$@) -S $< -o $@
2.2 Makefile 中的變數
頂層 Makefile 定義並向環境中輸出了許多變數,為各個子目錄下的 Makefile 傳遞一些信息。有些變數,比如 SUBDIRS,不僅在頂層 Makefile 中定義並且賦初值,而且在 arch/*/Makefile 還作了擴充。
常用的變數有以下幾類:
1) 版本信息
版本信息有:VERSION,PATCHLEVEL, SUBLEVEL, EXTRAVERSION,KERNELRELEASE。版本信息定義了當前內核的版本,比如 VERSION=2,PATCHLEVEL=4,SUBLEVEL=18,EXATAVERSION=-rmk7,它們共同構成內核的發行版本KERNELRELEASE:2.4.18-rmk7
2) CPU 體系結構:ARCH
在頂層 Makefile 的開頭,用 ARCH 定義目標 CPU 的體系結構,比如 ARCH:=arm 等。許多子目錄的 Makefile 中,要根據 ARCH 的定義選擇編譯源文件的列表。
3) 路徑信息:TOPDIR, SUBDIRS
TOPDIR 定義了 Linux 內核源代碼所在的根目錄。例如,各個子目錄下的 Makefile 通過 $(TOPDIR)/Rules.make 就可以找到 Rules.make 的位置。
SUBDIRS 定義了一個目錄列表,在編譯內核或模塊時,頂層 Makefile 就是根據 SUBDIRS 來決定進入哪些子目錄。SUBDIRS 的值取決於內核的配置,在頂層 Makefile 中 SUBDIRS 賦值為 kernel drivers mm fs net ipc lib;根據內核的配置情況,在 arch/*/Makefile 中擴充了 SUBDIRS 的值,參見4)中的例子。
4) 內核組成信息:HEAD, CORE_FILES, NETWORKS, DRIVERS, LIBS
Linux 內核文件 vmlinux 是由以下規則產生的:
vmlinux: $(CONFIGURATION) init/main.o init/version.o linuxsubdirs
$(LD) $(LINKFLAGS) $(HEAD) init/main.o init/version.o
--start-group
$(CORE_FILES)
$(DRIVERS)
$(NETWORKS)
$(LIBS)
--end-group
-o vmlinux
可以看出,vmlinux 是由 HEAD、main.o、version.o、CORE_FILES、DRIVERS、NETWORKS 和 LIBS 組成的。這些變數(如 HEAD)都是用來定義連接生成 vmlinux 的目標文件和庫文件列表。其中,HEAD在arch/*/Makefile 中定義,用來確定被最先鏈接進 vmlinux 的文件列表。比如,對於 ARM 系列的 CPU,HEAD 定義為:
HEAD := arch/arm/kernel/head-$(PROCESSOR).o
arch/arm/kernel/init_task.o
表明 head-$(PROCESSOR).o 和 init_task.o 需要最先被鏈接到 vmlinux 中。PROCESSOR 為 armv 或 armo,取決於目標 CPU。 CORE_FILES,NETWORK,DRIVERS 和 LIBS 在頂層 Makefile 中定義,並且由 arch/*/Makefile 根據需要進行擴充。 CORE_FILES 對應著內核的核心文件,有 kernel/kernel.o,mm/mm.o,fs/fs.o,ipc/ipc.o,可以看出,這些是組成內核最為重要的文件。同時,arch/arm/Makefile 對 CORE_FILES 進行了擴充:
# arch/arm/Makefile
# If we have a machine-specific directory, then include it in the build.
MACHDIR := arch/arm/mach-$(MACHINE)
ifeq ($(MACHDIR),$(wildcard $(MACHDIR)))
SUBDIRS += $(MACHDIR)
CORE_FILES := $(MACHDIR)/$(MACHINE).o $(CORE_FILES)
endif
HEAD := arch/arm/kernel/head-$(PROCESSOR).o
arch/arm/kernel/init_task.o
SUBDIRS += arch/arm/kernel arch/arm/mm arch/arm/lib arch/arm/nwfpe
CORE_FILES := arch/arm/kernel/kernel.o arch/arm/mm/mm.o $(CORE_FILES)
LIBS := arch/arm/lib/lib.a $(LIBS)
5) 編譯信息:CPP, CC, AS, LD, AR,CFLAGS,LINKFLAGS
在 Rules.make 中定義的是編譯的通用規則,具體到特定的場合,需要明確給出編譯環境,編譯環境就是在以上的變數中定義的。針對交叉編譯的要求,定義了 CROSS_COMPILE。比如:
CROSS_COMPILE = arm-linux-
CC = $(CROSS_COMPILE)gcc
LD = $(CROSS_COMPILE)ld
......
CROSS_COMPILE 定義了交叉編譯器前綴 arm-linux-,表明所有的交叉編譯工具都是以 arm-linux- 開頭的,所以在各個交叉編譯器工具之前,都加入了 $(CROSS_COMPILE),以組成一個完整的交叉編譯工具文件名,比如 arm-linux-gcc。
CFLAGS 定義了傳遞給 C 編譯器的參數。
LINKFLAGS 是鏈接生成 vmlinux 時,由鏈接器使用的參數。LINKFLAGS 在 arm/*/Makefile 中定義,比如:
# arch/arm/Makefile
LINKFLAGS :=-p -X -T arch/arm/vmlinux.lds
6) 配置變數CONFIG_*
.config 文件中有許多的配置變數等式,用來說明用戶配置的結果。例如 CONFIG_MODULES=y 表明用戶選擇了 Linux 內核的模塊功能。
.config 被頂層 Makefile 包含後,就形成許多的配置變數,每個配置變數具有確定的值:y 表示本編譯選項對應的內核代碼被靜態編譯進 Linux 內核;m 表示本編譯選項對應的內核代碼被編譯成模塊;n 表示不選擇此編譯選項;如果根本就沒有選擇,那麼配置變數的值為空。
2.3 Rules.make 變數
前面講過,Rules.make 是編譯規則文件,所有的 Makefile 中都會包括 Rules.make。Rules.make 文件定義了許多變數,最為重要是那些編譯、鏈接列表變數。
O_OBJS,L_OBJS,OX_OBJS,LX_OBJS:本目錄下需要編譯進 Linux 內核 vmlinux 的目標文件列表,其中 OX_OBJS 和 LX_OBJS 中的 "X" 表明目標文件使用了 EXPORT_SYMBOL 輸出符號。
M_OBJS,MX_OBJS:本目錄下需要被編譯成可裝載模塊的目標文件列表。同樣,MX_OBJS 中的 "X" 表明目標文件使用了 EXPORT_SYMBOL 輸出符號。
O_TARGET,L_TARGET:每個子目錄下都有一個 O_TARGET 或 L_TARGET,Rules.make 首先從源代碼編譯生成 O_OBJS 和 OX_OBJS 中所有的目標文件,然後使用 $(LD) -r 把它們鏈接成一個 O_TARGET 或 L_TARGET。O_TARGET 以 .o 結尾,而 L_TARGET 以 .a 結尾。
『拾』 怎樣解讀LINUX系統的源代碼
解讀LINUX
的源代碼,這一點阻擋了許多人的熱情。
我的建議是:隨著技術的發展,LINUX系統也向著桌面化發展,在內核內加入了越來越多的代碼,是內核越來越臃腫,增加了閱讀的難度.
1.一般情況下LINUX的源代碼位於/USR/LINUX下
2.其中的ARCH目錄下為一些重要的代碼.
3.INCLUDE目錄下是編譯系統所需要的頭文件
4.其他的一些文件大多可以根據其所在文件夾的名字,以及自身的名字來
判斷.
蒲У姆絞接枰源娣