⑴ 如何提高蟻群路由演算法收斂速度
述了。
目前蟻群演算法主要用在組合優化方面,基本蟻群演算法的思路是這樣的:
1.
在初始狀態下,一群螞蟻外出,此時沒有信息素,那麼各自會隨機的選擇一條路徑。
2.
在下一個狀態,每隻螞蟻到達了不同的點,從初始點到這些點之間留下了信息素,螞蟻繼續走,已經到達目標的螞蟻開始返回,與此同時,下一批螞蟻出動,它們都會按照各條路徑上信息素的多少選擇路線(selection),更傾向於選擇信息素多的路徑走(當然也有隨機性)。
3.
又到了再下一個狀態,剛剛沒有螞蟻經過的路線上的信息素不同程度的揮發掉了(evaporation),而剛剛經過了螞蟻的路線信息素增強(reinforcement)。然後又出動一批螞蟻,重復第2個步驟。
每個狀態到下一個狀態的變化稱為一次迭代,在迭代多次過後,就會有某一條路徑上的信息素明顯多於其它路徑,這通常就是一條最優路徑。
關鍵的部分在於步驟2和3:
步驟2中,每隻螞蟻都要作出選擇,怎樣選擇呢?
selection過程用一個簡單的函數實現:
螞蟻選擇某條路線的概率=該路線上的信息素÷所有可選擇路線的信息素之和
假設螞蟻在i點,p(i,j)表示下一次到達j點的概率,而τ(i,j)表示ij兩點間的信息素,則:
p(i,j)=τ(i,j)/∑τ(i)
(如果所有可選路線的信息素之和∑τ(i)=0,即前面還沒有螞蟻來過,概率就是一個[0,1]上的隨機值,即隨機選擇一條路線)
步驟3中,揮發和增強是演算法的關鍵所在(也就是如何數學定義信息素的)
evaporation過程和reinforcement過程定義了一個揮發因子,是迭代次數k的一個函數
ρ(k)=1-lnk/ln(k+1)
最初設定每條路徑的信息素τ(i,j,0)為相同的值
然後,第k+1次迭代時,信息素的多少
對於沒有螞蟻經過的路線:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),顯然信息素減少了
有螞蟻經過的路線:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|w|,w為所有點的集合
為什麼各個函數要如此定義,這個問題很難解釋清楚,這也是演算法的精妙所在。如此定義信息素的揮發和增強,以及路徑選擇,根據馬爾可夫過程(隨機過程之一)能夠推導出,在迭代了足夠多次以後,演算法能夠收斂到最佳路徑。
組合優化很有意思的,像禁忌搜索、模擬退火、蟻群演算法、遺傳演算法、神經網路這些演算法能夠解決很多生活中的實際問題,樓主有空可以招本書看看。
⑵ 請教,採用蟻群演算法求解TSP問題的oliver30最優路徑
給你產考產考//蟻群演算法關於簡單的TSP問題求解//#include#include#include#include#include#defineM13//螞蟻的數量#defineN144//城市的數量#defineR1000//迭代次數#defineIN1//初始化的信息素的量#defineMAX0x7fffffff//定義最大值structcoordinate{charcity[15];//城市名intx;//城市相對橫坐標inty;//城市相對縱坐標}coords[N];doublegraph[N][N];//儲存城市之間的距離的鄰接矩陣,自己到自己記作MAXdoublephe[N][N];//每條路徑上的信息素的量doubleadd[N][N];//代表相應路徑上的信息素的增量doubleyita[N][N];//啟發函數,yita[i][j]=1/graph[i][j]intvis[M][N];//標記已經走過的城市intmap[M][N];//map[K][N]記錄第K只螞蟻走的路線doublesolution[M];//記錄某次循環中每隻螞蟻走的路線的距離intbestway[N];//記錄最近的那條路線doublebestsolution=MAX;intNcMax;//代表迭代次數,理論上迭代次數越多所求的解更接近最優解,最具有說服力doublealpha,betra,rou,Q;voidInitialize();//信息初始化voidInputcoords(FILE*fp);//將文件中的坐標信息讀入voidGreateGraph();//根據坐標信息建圖doubleDistance(int*p);//計算螞蟻所走的路線的總長度voidResult();//將結果保存到out.txt中voidInitialize(){alpha=2;betra=2;rou=0.7;Q=5000;NcMax=R;return;}voidInputcoords(FILE*fp){inti;intnumber;if(fp==NULL){printf("Sorry,thefileisnotexist\n");exit(1);}else{for(i=0;idrand)break;}vis[k][j]=1;//將走過的城市標記起來map[k][s]=j;//記錄城市的順序}s++;}memset(add,0,sizeof(add));for(k=0;k20)//設立一個上界,防止啟發因子的作用被淹沒phe[i][j]=20;}}memset(vis,0,sizeof(vis));memset(map,-1,sizeof(map));}Result();printf("Resultissavedinout.txt\n");return0;}
⑶ 蟻群演算法的問題
螞蟻究竟是怎麼找到食物的呢?在沒有螞蟻找到食物的時候,環境沒有有用的信息素,那麼螞蟻為什麼會相對有效的找到食物呢?這要歸功於螞蟻的移動規則,尤其是在沒有信息素時候的移動規則。首先,它要能盡量保持某種慣性,這樣使得螞蟻盡量向前方移動(開始,這個前方是隨機固定的一個方向),而不是原地無謂的打轉或者震動;其次,螞蟻要有一定的隨機性,雖然有了固定的方向,但它也不能像粒子一樣直線運動下去,而是有一個隨機的干擾。這樣就使得螞蟻運動起來具有了一定的目的性,盡量保持原來的方向,但又有新的試探,尤其當碰到障礙物的時候它會立即改變方向,這可以看成一種選擇的過程,也就是環境的障礙物讓螞蟻的某個方向正確,而其他方向則不對。這就解釋了為什麼單個螞蟻在復雜的諸如迷宮的地圖中仍然能找到隱蔽得很好的食物。
當然,在有一隻螞蟻找到了食物的時候,大部分螞蟻會沿著信息素很快找到食物的。但不排除會出現這樣的情況:在最初的時候,一部分螞蟻通過隨機選擇了同一條路徑,隨著這條路徑上螞蟻釋放的信息素越來越多,更多的螞蟻也選擇這條路徑,但這條路徑並不是最優(即最短)的,所以,導致了迭代次數完成後,螞蟻找到的不是最優解,而是次優解,這種情況下的結果可能對實際應用的意義就不大了。
螞蟻如何找到最短路徑的?這一是要歸功於信息素,另外要歸功於環境,具體說是計算機時鍾。信息素多的地方顯然經過這里的螞蟻會多,因而會有更多的螞蟻聚集過來。假設有兩條路從窩通向食物,開始的時候,走這兩條路的螞蟻數量同樣多(或者較長的路上螞蟻多,這也無關緊要)。當螞蟻沿著一條路到達終點以後會馬上返回來,這樣,短的路螞蟻來回一次的時間就短,這也意味著重復的頻率就快,因而在單位時間里走過的螞蟻數目就多,灑下的信息素自然也會多,自然會有更多的螞蟻被吸引過來,從而灑下更多的信息素……;而長的路正相反,因此,越來越多地螞蟻聚集到較短的路徑上來,最短的路徑就近似找到了。也許有人會問局部最短路徑和全局最短路的問題,實際上螞蟻逐漸接近全局最短路的,為什麼呢?這源於螞蟻會犯錯誤,也就是它會按照一定的概率不往信息素高的地方走而另闢蹊徑,這可以理解為一種創新,這種創新如果能縮短路途,那麼根據剛才敘述的原理,更多的螞蟻會被吸引過來。
⑷ 求教:蟻群演算法選擇最短路徑問題
這個例子其實是當初數模比賽時用來完成碎片拼接的,但其所用到原理還是求解最短路徑的原理。但這里的最短路徑和數據結構中最短路徑有一定的區別。在數據結構中,對於最短路徑的求解常用的一般有Dijkstra演算法與Floyd演算法,但對於要求出一條經過所有的點的並且要求路徑最短,這些演算法還是有一定的局限性的。而蟻群演算法則很好地滿足了這些條件。話說回來,很想吐槽一下網路流傳的一些蟻群演算法的例子,當初學習這個時候,身邊也沒有相關的書籍,只好到網上找例子。網上關於這個演算法源代碼的常見的有2個版本,都是出自博客,但是在例子都代碼是不完整的,缺失了一部分,但就是這樣的例子,居然流傳甚廣,我很好奇那些轉載這些源碼的人是否真的有去學習過這些,去調試過。當然,我下面的例子也是無法直接編譯通過的,因為涉及到圖像讀取處理等方面的東西,所以就只貼演算法代碼部分。但是對於這個問題蟻群演算法有一個比較大的缺點,就是收斂很慢,不過對於數量小的路徑,效果還是很好的。function bestqueue =aco1(nt,nc_max,m ,st, sd ,Alpha ,Beta ,Rho ,Q,gethead,getend)%參數解釋:%nt 路徑所經過的點的個數;%nc_max 迭代的次數;%m 螞蟻的個數;%st 起點序號;%sd 終點序號;%Alpha 信息素系數;�ta 啟發因子系數;%Rho 蒸發系數;% Q 信息量;%gethead getend 是用來求距離矩陣的,可根據實際情況修改
% nt = 209;%碎片個數full = zeros(nt,nt);tic;%初始化距離矩陣for i =1:nt for t = 1:nt if i ~= t full(i,t) = sum(abs(getend(:,i) - gethead(:,t))); else full(i,t) = inf; end endend% a =full(156,187)eta = 1./full;%啟發因子,取距離的倒數% eta% e = eta(4,2)tau = ones(nt,nt);%信息素矩陣% tabu = zeros(nt,nt);%禁忌矩陣,取螞蟻數量和碎片數量一致,以減少迭代次數nc =1;%初始化迭代次數;rbest=zeros(nc_max,nt);%各代最佳路線rbest(:,1) = (linspace(st,st,nc_max))';rbest(:,nt) =(linspace(sd,sd,nc_max))'; lbest=zeros(nc_max,1);%各代最佳路線的長度pathlen = 0;%臨時記錄每代最佳路線長度stime = 1;%記錄代數進度for i = 1:nc_max % 代數循環 delta_tau=zeros(nt,nt);%初始化改變數 stime for t = 1:m % 對螞蟻群體的循環, tabu=zeros(1,nt);%禁忌向量,標記已訪問的碎片,初試值設為0,訪問之後則變為1; viseted = zeros(1,nt);%記錄已訪問的元素的位置 tabu(st) = 1;%st為起點,在此表示為碎片矩陣的編號,因為已經將蟻群放在起點,故也應將禁忌向量和位置向量的狀態進行修改 tabu(sd) =1;%同上 visited(nt) = sd ;%同上; visited(1) = st;%同上; ht = 0; for r = 2:nt-1 %記錄了還沒訪問的圖片編號 vp = 1;%visited指示量 pp = [];%置空的概率向量 jc = 0; %獲取尚未訪問的位置的向量。 wv = zeros( nt -2 - ht ); for k =1 : nt if tabu(k) == 0 jc = jc +1; wv(jc) = k; end end% a =(tau(visited(end),ju(3))^Alpha)*(eta(visited(end),ju(3))^Beta)% visited(end) %計算選擇的概率 for k=1:length(wv) pp(k)=(tau(visited(vp),wv(k))^Alpha)*(eta(visited(vp),wv(k))^Beta);%下一張碎片的選擇概率計算,p =(信息素^信息素系數)*(啟發因子^啟發因子系數) end pp=pp./(sum(pp));%歸一化 pcum =cumsum(pp); psl = find(pcum >= rand);%輪盤賭法 to_visit= wv(psl(1)) ;%完成選點 tabu(to_visit) =1; visited(r) = to_visit; ht =ht +1;%已訪問碎片個數變化 vp =vp+1; end %路徑變化信息 %對單個螞蟻的路徑進行統計 sum1 =0; for pr = 1:nt -1 x = visited(pr); y = visited(pr+1) ; sum1 =sum1 + full(x,y); end% vcell{t} =visited;%元胞記錄每個螞蟻的路徑,即碎片順序;% msum(t) = sum1; %信息素變化; for ww=1:(nt-1) delta_tau(visited(ww),visited(ww+1))=delta_tau(visited(ww),visited(ww+1)) + Q/sum1; end% delta_tau(visited(end),visited(1))=delta_tau(visited(end),visited(1))+Q/(sum1/100);% if t == m & i == nc_max % bestqueue = visited% end if t == m bestqueue = visited end end tau=(1-Rho).*tau+delta_tau; %完成信息素的更新,找出現有的最新的最佳路徑,即信息素最多的路徑; stime =stime +1;end toc;
⑸ 螞蟻滅火的論文應用了哪些科學方法科學原理
摘要 3.3改進演算法描述改進演算法的具體步驟如下:步驟1參數初始化。令迭代次數為nc,且初始nc=0,最大nc=NC;設定螞蟻個數為m,將m個螞蟻置於初始頂點上;令道路拓撲圖上每條邊(if)的初始化信息量t(1)=C,且初始時刻Ar(0)=0。步驟2將各螞蟻的出發點置於當前解中。步驟3對每個螞蟻k(i=1,2,…)按改進後的狀態轉移規則p(1)移至下一頂點,將頂點/置於當前解中。步驟4若所有螞蟻的當前解集包含了終點,轉到步驟5,否則轉步驟3。
⑹ 求助Matlab蟻群演算法求一般函數極值的演算法
function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)
%% ---------------------------------------------------------------
% ACASP.m
% 蟻群演算法動態尋路演算法
% ChengAihua,PLA Information Engineering University,ZhengZhou,China
% Email:[email protected]
% All rights reserved
%% ---------------------------------------------------------------
% 輸入參數列表
% G 地形圖為01矩陣,如果為1表示障礙物
% Tau 初始信息素矩陣(認為前面的覓食活動中有殘留的信息素)
% K 迭代次數(指螞蟻出動多少波)
% M 螞蟻個數(每一波螞蟻有多少個)
% S 起始點(最短路徑的起始點)
% E 終止點(最短路徑的目的點)
% Alpha 表徵信息素重要程度的參數
% Beta 表徵啟發式因子重要程度的參數
% Rho 信息素蒸發系數
% Q 信息素增加強度系數
%
% 輸出參數列表
% ROUTES 每一代的每一隻螞蟻的爬行路線
% PL 每一代的每一隻螞蟻的爬行路線長度
% Tau 輸出動態修正過的信息素
%% --------------------變數初始化----------------------------------
%load
D=G2D(G);
N=size(D,1);%N表示問題的規模(象素個數)
MM=size(G,1);
a=1;%小方格象素的邊長
Ex=a*(mod(E,MM)-0.5);%終止點橫坐標
if Ex==-0.5
Ex=MM-0.5;
end
Ey=a*(MM+0.5-ceil(E/MM));%終止點縱坐標
Eta=zeros(1,N);%啟發式信息,取為至目標點的直線距離的倒數
%下面構造啟發式信息矩陣
for i=1:N
if ix==-0.5
ix=MM-0.5;
end
iy=a*(MM+0.5-ceil(i/MM));
if i~=E
Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;
else
Eta(1,i)=100;
end
end
ROUTES=cell(K,M);%用細胞結構存儲每一代的每一隻螞蟻的爬行路線
PL=zeros(K,M);%用矩陣存儲每一代的每一隻螞蟻的爬行路線長度
%% -----------啟動K輪螞蟻覓食活動,每輪派出M只螞蟻--------------------
for k=1:K
disp(k);
for m=1:M
%% 第一步:狀態初始化
W=S;%當前節點初始化為起始點
Path=S;%爬行路線初始化
PLkm=0;%爬行路線長度初始化
TABUkm=ones(1,N);%禁忌表初始化
TABUkm(S)=0;%已經在初始點了,因此要排除
DD=D;%鄰接矩陣初始化
%% 第二步:下一步可以前往的節點
DW=DD(W,:);
DW1=find(DW
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可選節點的個數
%% 覓食停止條件:螞蟻未遇到食物或者陷入死胡同
while W~=E&&Len_LJD>=1
%% 第三步:轉輪賭法選擇下一步怎麼走
PP=zeros(1,Len_LJD);
for i=1:Len_LJD
PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
end
PP=PP/(sum(PP));%建立概率分布
Pcum=cumsum(PP);
Select=find(Pcum>=rand);
%% 第四步:狀態更新和記錄
Path=[Path,to_visit];%路徑增加
PLkm=PLkm+DD(W,to_visit);%路徑長度增加
W=to_visit;%螞蟻移到下一個節點
for kk=1:N
if TABUkm(kk)==0
DD(W,kk)=inf;
DD(kk,W)=inf;
end
end
TABUkm(W)=0;%已訪問過的節點從禁忌表中刪除
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可選節點的個數
end
%% 第五步:記下每一代每一隻螞蟻的覓食路線和路線長度
ROUTES{k,m}=Path;
if Path(end)==E
PL(k,m)=PLkm;
else
PL(k,m)=inf;
end
end
%% 第六步:更新信息素
Delta_Tau=zeros(N,N);%更新量初始化
for m=1:M
if PL(k,m) ROUT=ROUTES{k,m};
TS=length(ROUT)-1;%跳數
PL_km=PL(k,m);
for s=1:TS
x=ROUT(s);
Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
end
end
end
Tau=(1-Rho).