Ⅰ dbscan聚類演算法是什麼
dbscan聚類演算法是基於密度的聚類演算法,與劃分和層次聚類方法不同,它將簇定義為密度相連的點的最大集合,能夠把具有足夠高密度的區域劃分為簇,並可在雜訊的空間資料庫中發現任意形狀的聚類。
對於樣本集合D,如果樣本點q在p的Ε鄰域內,並且p為核心對象,那麼對象q從對象p直接密度可達。
聚類演算法的應用
DBScan需要二個參數掃描半徑 和最小包含點數。 任選一個未被訪問的點開始,找出與其距離在eps之內的所有附近點。如果附近點的數量≥minPts,則當前點與其附近點形成一個簇,並且出發點被標記為已訪問。
然後遞歸,以相同的方法處理該簇內所有未被標記為已訪問的點,從而對簇進行擴展。附近點的數量<minPts,則該點暫時被標記作為雜訊點。如果簇充分地被擴展,即簇內的所有點被標記為已訪問,然後用同樣的演算法去處理未被訪問的點檢測資料庫中尚未檢查過的對象p。
如果p未被處理歸為某個簇或者標記為雜訊,則檢查其鄰域,若包含的對象數不小於minPts,建立新簇C,將其中的所有點加入候選集N;對候選集N中所有尚未被處理的對象q,檢查其鄰域,若至少包含minPts個對象,則將這些對象加入N;如果q未歸入任何一個簇,則將q加入C。
Ⅱ 什麼是聚類分析聚類演算法有哪幾種
聚類分析是分類演算法中的一種,是無監督的,不需要訓練。
聚類演算法分為:硬聚類演算法和軟聚類演算法,硬聚類中最經典的是K均值聚類演算法,就是大家所說的K-means演算法,軟聚類演算法中最經典的是模糊C均值聚類演算法,就是FCM。後續的一些聚類演算法都是在這兩種上改進的
Ⅲ dbscan演算法是什麼
DBSCAN基於高密度連通區域的、基於密度的聚類演算法,能夠將具有足夠高密度的區域劃分為簇,並在具有雜訊的數據中發現任意形狀的簇。我們總結一下DBSCAN聚類演算法原理的基本要點:
DBSCAN演算法需要選擇一種距離度量,對於待聚類的數據集中,任意兩個點之間的距離,反映了點之間的密度,說明了點與點是否能夠聚到同一類中。由於DBSCAN演算法對高維數據定義密度很困難,所以對於二維空間中的點,可以使用歐幾里德距離來進行度量。
(3)dbscan演算法改進擴展閱讀:
dbscan個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。
(1)適當選擇c個類的初始中心;
(2)在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類;
(3)利用均值等方法更新該類的中心值;
(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代。
Ⅳ 用於數據挖掘的聚類演算法有哪些,各有何優勢
聚類方法的分類,主要分為層次化聚類演算法,劃分式聚類演算法,基於密度的聚類演算法,基於網格的聚類演算法,基於模型的聚類演算法等。
而衡量聚類演算法優劣的標准主要是這幾個方面:處理大的數據集的能力;處理任意形狀,包括有間隙的嵌套的數據的能力;演算法處理的結果與數據輸入的順序是否相關,也就是說演算法是否獨立於數據輸入順序;處理數據雜訊的能力;是否需要預先知道聚類個數,是否需要用戶給出領域知識;演算法處理有很多屬性數據的能力,也就是對數據維數是否敏感。
.聚類演算法主要有兩種演算法,一種是自下而上法(bottom-up),一種是自上而下法(top-down)。這兩種路徑本質上各有優勢,主要看實際應用的時候要根據數據適用於哪一種,Hierarchical methods中比較新的演算法有BIRCH主要是在數據體量很大的時候使用;ROCK優勢在於異常數據抗干擾性強……
關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。
Ⅳ optics演算法中可達距離怎麼理解,其大小對聚類是有事么影響急急急急
當兩個點p,q的可達距離為d的意思就是:當p或者q為核心對象,並且鄰域參數\epsilon大於等於d時,p與q是直接密度可達的。對聚類的大小沒有影響,它是一個中間值,可以幫助選擇合適的\epsilon值。它是對DBSCAN的一個改進,DBSCAN需要兩個參數minpts和\epsilon,為了找到適合的聚類需要測試大量的參數,而OPTICS則只依賴於minpts,同時處理小於當前鄰域的所有鄰域值,而只需要O(nlogn),提高了效率。你看一下jiawei han的《data mining》裡面的dbscan和optics,講的更加詳細
Ⅵ 有哪些常用的聚類演算法
聚類分析計算方法主要有如下幾種:
1. 劃分法(partitioning methods)
給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:(1) 每一個分組至少包含一個數據紀錄;(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法;
2. 層次法(hierarchical methods)
這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。例如在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等;
3. 基於密度的方法(density-based methods)
基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。這個方法的指導思想就是,只要一個區域中的點的密度大過某個閥值,就把它加到與之相近的聚類中去。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等;
4. 基於網格的方法(grid-based methods)
這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;
5. 基於模型的方法(model-based methods)
基於模型的方法給每一個聚類假定一個模型,然後去尋找能個很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。通常有兩種嘗試方向:統計的方案和神經網路的方案。
Ⅶ 常用的聚類方法有哪幾種
聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。
1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。
2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。
3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。
5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。
6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。
(7)dbscan演算法改進擴展閱讀:
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。
它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。
Ⅷ dbscan聚類演算法是什麼
DBSCAN是基於密度空間的聚類演算法,與KMeans演算法不同,它不需要確定聚類的數量,而是基於數據推測聚類的數目,它能夠針對任意形狀產生聚類。
DBSCAN使用的方法很簡單,它任意選擇一個沒有類別的核心對象作為種子,然後找到所有這個核心對象能夠密度可達的樣本集合,即為一個聚類簇。接著繼續選擇另一個沒有類別的核心對象去尋找密度可達的樣本集合,這樣就得到另一個聚類簇。
DBSCAN演算法需要首先確定兩個參數:
1、epsilon:在一個點周圍鄰近區域的半徑。
2、minPts:鄰近區域內至少包含點的個數。
通常根據以上兩個參數,結合epsilon-neighborhood的特徵,可以把樣本中的點分成核點、邊緣點、離群點三類。
Ⅸ DBSCAN原理和演算法偽代碼,與kmeans,OPTICS區別
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚類演算法,它是一種基於高密度連通區域的、基於密度的聚類演算法,能夠將具有足夠高密度的區域劃分為簇,並在具有雜訊的數據中發現任意形狀的簇。我們總結一下DBSCAN聚類演算法原理的基本要點:
DBSCAN演算法需要選擇一種距離度量,對於待聚類的數據集中,任意兩個點之間的距離,反映了點之間的密度,說明了點與點是否能夠聚到同一類中。由於DBSCAN演算法對高維數據定義密度很困難,所以對於二維空間中的點,可以使用歐幾里德距離來進行度量。
DBSCAN演算法需要用戶輸入2個參數:一個參數是半徑(Eps),表示以給定點P為中心的圓形鄰域的范圍;另一個參數是以點P為中心的鄰域內最少點的數量(MinPts)。如果滿足:以點P為中心、半徑為Eps的鄰域內的點的個數不少於MinPts,則稱點P為核心點。
DBSCAN聚類使用到一個k-距離的概念,k-距離是指:給定數據集P={p(i); i=0,1,…n},對於任意點P(i),計算點P(i)到集合D的子集S={p(1), p(2), …, p(i-1), p(i+1), …, p(n)}中所有點之間的距離,距離按照從小到大的順序排序,假設排序後的距離集合為D={d(1), d(2), …, d(k-1), d(k), d(k+1), …,d(n)},則d(k)就被稱為k-距離。也就是說,k-距離是點p(i)到所有點(除了p(i)點)之間距離第k近的距離。對待聚類集合中每個點p(i)都計算k-距離,最後得到所有點的k-距離集合E={e(1), e(2), …, e(n)}。
根據經驗計算半徑Eps:根據得到的所有點的k-距離集合E,對集合E進行升序排序後得到k-距離集合E』,需要擬合一條排序後的E』集合中k-距離的變化曲線圖,然後繪出曲線,通過觀察,將急劇發生變化的位置所對應的k-距離的值,確定為半徑Eps的值。
根據經驗計算最少點的數量MinPts:確定MinPts的大小,實際上也是確定k-距離中k的值,DBSCAN演算法取k=4,則MinPts=4。
另外,如果覺得經驗值聚類的結果不滿意,可以適當調整Eps和MinPts的值,經過多次迭代計算對比,選擇最合適的參數值。可以看出,如果MinPts不變,Eps取得值過大,會導致大多數點都聚到同一個簇中,Eps過小,會導致已一個簇的分裂;如果Eps不變,MinPts的值取得過大,會導致同一個簇中點被標記為雜訊點,MinPts過小,會導致發現大量的核心點。
我們需要知道的是,DBSCAN演算法,需要輸入2個參數,這兩個參數的計算都來自經驗知識。半徑Eps的計算依賴於計算k-距離,DBSCAN取k=4,也就是設置MinPts=4,然後需要根據k-距離曲線,根據經驗觀察找到合適的半徑Eps的值,下面的演算法實現過程中,我們會詳細說明。對於演算法的實現,首先我們概要地描述一下實現的過程:
1)解析樣本數據文件。2)計算每個點與其他所有點之間的歐幾里德距離。3)計算每個點的k-距離值,並對所有點的k-距離集合進行升序排序,輸出的排序後的k-距離值。4)將所有點的k-距離值,在Excel中用散點圖顯示k-距離變化趨勢。5)根據散點圖確定半徑Eps的值。)根據給定MinPts=4,以及半徑Eps的值,計算所有核心點,並建立核心點與到核心點距離小於半徑Eps的點的映射。7)根據得到的核心點集合,以及半徑Eps的值,計算能夠連通的核心點,得到雜訊點。8)將能夠連通的每一組核心點,以及到核心點距離小於半徑Eps的點,都放到一起,形成一個簇。9)選擇不同的半徑Eps,使用DBSCAN演算法聚類得到的一組簇及其雜訊點,使用散點圖對比聚類效果。
演算法偽代碼:
演算法描述:
演算法:DBSCAN
輸入:E——半徑
MinPts——給定點在E鄰域內成為核心對象的最小鄰域點數。
D——集合。
輸出:目標類簇集合
方法:Repeat
1)判斷輸入點是否為核心對象
2)找出核心對象的E鄰域中的所有直接密度可達點。
Until 所有輸入點都判斷完畢。
Repeat
針對所有核心對象的E鄰域內所有直接密度可達點找到最大密度相連對象集合,中間涉及到一些密度可達對象的合並。Until 所有核心對象的E領域都遍歷完畢
DBSCAN和Kmeans的區別:
1)K均值和DBSCAN都是將每個對象指派到單個簇的劃分聚類演算法,但是K均值一般聚類所有對象,而DBSCAN丟棄被它識別為雜訊的對象。
2)K均值使用簇的基於原型的概念,而DBSCAN使用基於密度的概念。
3)K均值很難處理非球形的簇和不同大小的簇。DBSCAN可以處理不同大小或形狀的簇,並且不太受雜訊和離群點的影響。當簇具有很不相同的密度時,兩種演算法的性能都很差。
4)K均值只能用於具有明確定義的質心(比如均值或中位數)的數據。DBSCAN要求密度定義(基於傳統的歐幾里得密度概念)對於數據是有意義的。
5)K均值可以用於稀疏的高維數據,如文檔數據。DBSCAN通常在這類數據上的性能很差,因為對於高維數據,傳統的歐幾里得密度定義不能很好處理它們。
6)K均值和DBSCAN的最初版本都是針對歐幾里得數據設計的,但是它們都被擴展,以便處理其他類型的數據。
7)基本K均值演算法等價於一種統計聚類方法(混合模型),假定所有的簇都來自球形高斯分布,具有不同的均值,但具有相同的協方差矩陣。DBSCAN不對數據的分布做任何假定。
8)K均值DBSCAN和都尋找使用所有屬性的簇,即它們都不尋找可能只涉及某個屬性子集的簇。
9)K均值可以發現不是明顯分離的簇,即便簇有重疊也可以發現,但是DBSCAN會合並有重疊的簇。
10)K均值演算法的時間復雜度是O(m),而DBSCAN的時間復雜度是O(m^2),除非用於諸如低維歐幾里得數據這樣的特殊情況。
11)DBSCAN多次運行產生相同的結果,而K均值通常使用隨機初始化質心,不會產生相同的結果。
12)DBSCAN自動地確定簇個數,對於K均值,簇個數需要作為參數指定。然而,DBSCAN必須指定另外兩個參數:Eps(鄰域半徑)和MinPts(最少點數)。
13)K均值聚類可以看作優化問題,即最小化每個點到最近質心的誤差平方和,並且可以看作一種統計聚類(混合模型)的特例。DBSCAN不基於任何形式化模型。
DBSCAN與OPTICS的區別:
DBSCAN演算法,有兩個初始參數E(鄰域半徑)和minPts(E鄰域最小點數)需要用戶手動設置輸入,並且聚類的類簇結果對這兩個參數的取值非常敏感,不同的取值將產生不同的聚類結果,其實這也是大多數其他需要初始化參數聚類演算法的弊端。
為了克服DBSCAN演算法這一缺點,提出了OPTICS演算法(Ordering Points to identify the clustering structure)。OPTICS並 不顯示的產生結果類簇,而是為聚類分析生成一個增廣的簇排序(比如,以可達距離為縱軸,樣本點輸出次序為橫軸的坐標圖),這個排序代表了各樣本點基於密度 的聚類結構。它包含的信息等價於從一個廣泛的參數設置所獲得的基於密度的聚類,換句話說,從這個排序中可以得到基於任何參數E和minPts的DBSCAN演算法的聚類結果。
OPTICS兩個概念:
核心距離:對象p的核心距離是指是p成為核心對象的最小E』。如果p不是核心對象,那麼p的核心距離沒有任何意義。
可達距離:對象q到對象p的可達距離是指p的核心距離和p與q之間歐幾里得距離之間的較大值。如果p不是核心對象,p和q之間的可達距離沒有意義。
演算法描述:OPTICS演算法額外存儲了每個對象的核心距離和可達距離。基於OPTICS產生的排序信息來提取類簇。
Ⅹ DBSCAN原理
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚類演算法,它是一種基於高密度連通區域的、基於密度的聚類演算法,能夠將具有足夠高密度的區域劃分為簇,並在具有雜訊的數據中發現任意形狀的簇。我們總結一下DBSCAN聚類演算法原理的基本要點:
DBSCAN演算法需要選擇一種距離度量,對於待聚類的數據集中,任意兩個點之間的距離,反映了點之間的密度,說明了點與點是否能夠聚到同一類中。由於DBSCAN演算法對高維數據定義密度很困難,所以對於二維空間中的點,可以使用歐幾里德距離來進行度量。
DBSCAN演算法需要用戶輸入2個參數:一個參數是半徑(Eps),表示以給定點P為中心的圓形鄰域的范圍;另一個參數是以點P為中心的鄰域內最少點的數量(MinPts)。如果滿足:以點P為中心、半徑為Eps的鄰域內的點的個數不少於MinPts,則稱點P為核心點。
DBSCAN聚類使用到一個k-距離的概念,k-距離是指:給定數據集P={p(i); i=0,1,…n},對於任意點P(i),計算點P(i)到集合D的子集S={p(1), p(2), …, p(i-1), p(i+1), …, p(n)}中所有點之間的距離,距離按照從小到大的順序排序,假設排序後的距離集合為D={d(1), d(2), …, d(k-1), d(k), d(k+1), …,d(n)},則d(k)就被稱為k-距離。也就是說,k-距離是點p(i)到所有點(除了p(i)點)之間距離第k近的距離。對待聚類集合中每個點p(i)都計算k-距離,最後得到所有點的k-距離集合E={e(1), e(2), …, e(n)}。
根據經驗計算半徑Eps:根據得到的所有點的k-距離集合E,對集合E進行升序排序後得到k-距離集合E』,需要擬合一條排序後的E』集合中k-距離的變化曲線圖,然後繪出曲線,通過觀察,將急劇發生變化的位置所對應的k-距離的值,確定為半徑Eps的值。
根據經驗計算最少點的數量MinPts:確定MinPts的大小,實際上也是確定k-距離中k的值,DBSCAN演算法取k=4,則MinPts=4。
另外,如果覺得經驗值聚類的結果不滿意,可以適當調整Eps和MinPts的值,經過多次迭代計算對比,選擇最合適的參數值。可以看出,如果MinPts不變,Eps取得值過大,會導致大多數點都聚到同一個簇中,Eps過小,會導致以一個簇的分裂;如果Eps不變,MinPts的值取得過大,會導致同一個簇中點被標記為雜訊點,MinPts過小,會導致發現大量的核心點。