導航:首頁 > 源碼編譯 > 粒子群演算法屬於局部搜索嗎

粒子群演算法屬於局部搜索嗎

發布時間:2022-10-01 15:58:49

1. 智能演算法的演算法分類

模擬退火演算法的依據是固體物質退火過程和組合優化問題之間的相似性。物質在加熱的時候,粒子間的布朗運動增強,到達一定強度後,固體物質轉化為液態,這個時候再進行退火,粒子熱運動減弱,並逐漸趨於有序,最後達到穩定。
模擬退火的解不再像局部搜索那樣最後的結果依賴初始點。它引入了一個接受概率p。如果新的點(設為pn)的目標函數f(pn)更好,則p=1,表示選取新點;否則,接受概率p是當前點(設為pc)的目標函數f(pc),新點的目標函數f(pn)以及另一個控制參數「溫度」T的函數。也就是說,模擬退火沒有像局部搜索那樣每次都貪婪地尋找比現在好的點,目標函數差一點的點也有可能接受進來。隨著演算法的執行,系統溫度T逐漸降低,最後終止於某個低溫,在該溫度下,系統不再接受變化。
模擬退火的典型特徵是除了接受目標函數的改進外,還接受一個衰減極限,當T較大時,接受較大的衰減,當T逐漸變小時,接受較小的衰減,當T為0時,就不再接受衰減。這一特徵意味著模擬退火與局部搜索相反,它能避開局部極小,並且還保持了局部搜索的通用性和簡單性。
在物理上,先加熱,讓分子間互相碰撞,變成無序狀態,內能加大,然後降溫,最後的分子次序反而會更有序,內能比沒有加熱前更小。就像那隻兔子,它喝醉後,對比較近的山峰視而不見,迷迷糊糊地跳一大圈子,反而更有可能找到珠峰。
值得注意的是,當T為0時,模擬退火就成為局部搜索的一個特例。
模擬退火的偽碼表達:
procere simulated annealing
begin
t:=0;
initialize temperature T
select a current string vc at random;
evaluate vc;
repeat
repeat
select a new string vn in the neighborhood of vc; (1)
if f(vc)<f(vn)
then vc:=vn;
else if random [0,1] <exp ((f (vn)-f (vc))/T) (2)
then vc:=vn;
until (termination-condition) (3)
T:=g(T,t); (4)
T:=t+1;
until (stop-criterion) (5)
end;
上面的程序中,關鍵的是(1)新狀態產生函數,(2)新狀態接受函數,(3)抽樣穩定準則,(4)退溫函數,(5)退火結束准則(簡稱三函數兩准則)是直接影響優化結果的主要環節。雖然實驗結果證明初始值對於最後的結果沒有影響,但是初溫越高,得到高質量解的概率越大。所以,應該盡量選取比較高的初溫。
上面關鍵環節的選取策略:
(1)狀態產生函數:候選解由當前解的鄰域函數決定,可以取互換,插入,逆序等操作產生,然後根據概率分布方式選取新的解,概率可以取均勻分布、正態分布、高斯分布、柯西分布等。
(2)狀態接受函數:這個環節最關鍵,但是,實驗表明,何種接受函數對於最後結果影響不大。所以,一般選取min [1, exp ((f (vn)-f (vc))/T)]。
(3)抽樣穩定準則:一般常用的有:檢驗目標函數的均值是否穩定;連續若干步的目標值變化較小;規定一定的步數;
(4)退溫函數:如果要求溫度必須按照一定的比率下降,SA演算法可以採用,但是溫度下降很慢;快速SA中,一般採用 。目前,經常用的是 ,是一個不斷變化的值。
(5)退火結束准則:一般有:設置終止溫度;設置迭代次數;搜索到的最優值連續多次保持不變;檢驗系統熵是否穩定。
為了保證有比較優的解,演算法往往採取慢降溫、多抽樣、以及把「終止溫度」設的比較低等方式,導致演算法運行時間比較長,這也是模擬退火的最大缺點。人喝醉了酒辦起事來都不利索,何況兔子? 「物競天擇,適者生存」,是進化論的基本思想。遺傳演算法就是模擬自然界想做的事。遺傳演算法可以很好地用於優化問題,若把它看作對自然過程高度理想化的模擬,更能顯出它本身的優雅——雖然生存競爭是殘酷的。
遺傳演算法以一種群體中的所有個體為對象,並利用隨機化技術指導對一個被編碼的參數空間進行高效搜索。其中,選擇、交叉和變異構成了遺傳演算法的遺傳操作;參數編碼、初始群體的設定、適應度函數的設計、遺傳操作設計、控制參數設定五個要素組成了遺傳演算法的核心內容。作為一種新的全局優化搜索演算法,遺傳演算法以其簡單通用、健壯性強、適於並行處理以及高效、實用等顯著特點,在各個領域得到了廣泛應用,取得了良好效果,並逐漸成為重要的智能演算法之一。
遺傳演算法的偽碼:
procere genetic algorithm
begin
initialize a group and evaluate the fitness value ; (1)
while not convergent (2)
begin
select; (3)
if random[0,1]<pc then
crossover; (4)
if random (0,1)<pm then
mutation; (5)
end;
end
上述程序中有五個重要的環節:
(1)編碼和初始群體的生成:GA在進行搜索之前先將解空間的解數據表示成遺傳空間的基因型串結構數據,這些串結構數據的不同組合便構成了不同的點。然後隨機產生N個初始串結構數據,每個串結構數據稱為一個個體, N個體構成了一個群體。GA以這N個串結構數據作為初始點開始迭代。
比如,旅行商問題中,可以把商人走過的路徑進行編碼,也可以對整個圖矩陣進行編碼。編碼方式依賴於問題怎樣描述比較好解決。初始群體也應該選取適當,如果選取的過小則雜交優勢不明顯,演算法性能很差(數量上佔了優勢的老鼠進化能力比老虎強),群體選取太大則計算量太大。
(2)檢查演算法收斂准則是否滿足,控制演算法是否結束。可以採用判斷與最優解的適配度或者定一個迭代次數來達到。
(3)適應性值評估檢測和選擇:適應性函數表明個體或解的優劣性,在程序的開始也應該評價適應性,以便和以後的做比較。不同的問題,適應性函數的定義方式也不同。根據適應性的好壞,進行選擇。選擇的目的是為了從當前群體中選出優良的個體,使它們有機會作為父代為下一代繁殖子孫。遺傳演算法通過選擇過程體現這一思想,進行選擇的原則是適應性強的個體為下一代貢獻一個或多個後代的概率大。選擇實現了達爾文的適者生存原則。
(4)雜交:按照雜交概率(pc)進行雜交。雜交操作是遺傳演算法中最主要的遺傳操作。通過雜交操作可以得到新一代個體,新個體組合了其父輩個體的特性。雜交體現了信息交換的思想。
可以選定一個點對染色體串進行互換,插入,逆序等雜交,也可以隨機選取幾個點雜交。雜交概率如果太大,種群更新快,但是高適應性的個體很容易被淹沒,概率小了搜索會停滯。
(5)變異:按照變異概率(pm)進行變異。變異首先在群體中隨機選擇一個個體,對於選中的個體以一定的概率隨機地改變串結構數據中某個串的值。同生物界一樣,GA中變異發生的概率很低。變異為新個體的產生提供了機會。
變異可以防止有效基因的缺損造成的進化停滯。比較低的變異概率就已經可以讓基因不斷變更,太大了會陷入隨機搜索。想一下,生物界每一代都和上一代差距很大,會是怎樣的可怕情形。
就像自然界的變異適和任何物種一樣,對變數進行了編碼的遺傳演算法沒有考慮函數本身是否可導,是否連續等性質,所以適用性很強;並且,它開始就對一個種群進行操作,隱含了並行性,也容易找到「全局最優解」。 為了找到「全局最優解」,就不應該執著於某一個特定的區域。局部搜索的缺點就是太貪婪地對某一個局部區域以及其鄰域搜索,導致一葉障目,不見泰山。禁忌搜索就是對於找到的一部分局部最優解,有意識地避開它(但不是完全隔絕),從而獲得更多的搜索區間。兔子們找到了泰山,它們之中的一隻就會留守在這里,其他的再去別的地方尋找。就這樣,一大圈後,把找到的幾個山峰一比較,珠穆朗瑪峰脫穎而出。
當兔子們再尋找的時候,一般地會有意識地避開泰山,因為他們知道,這里已經找過,並且有一隻兔子在那裡看著了。這就是禁忌搜索中「禁忌表(tabu list)」的含義。那隻留在泰山的兔子一般不會就安家在那裡了,它會在一定時間後重新回到找最高峰的大軍,因為這個時候已經有了許多新的消息,泰山畢竟也有一個不錯的高度,需要重新考慮,這個歸隊時間,在禁忌搜索裡面叫做「禁忌長度(tabu length)」;如果在搜索的過程中,留守泰山的兔子還沒有歸隊,但是找到的地方全是華北平原等比較低的地方,兔子們就不得不再次考慮選中泰山,也就是說,當一個有兔子留守的地方優越性太突出,超過了「best to far」的狀態,就可以不顧及有沒有兔子留守,都把這個地方考慮進來,這就叫「特赦准則(aspiration criterion)」。這三個概念是禁忌搜索和一般搜索准則最不同的地方,演算法的優化也關鍵在這里。
偽碼表達:
procere tabu search;
begin
initialize a string vc at random,clear up the tabu list;
cur:=vc;
repeat
select a new string vn in the neighborhood of vc;
if va>best_to_far then {va is a string in the tabu list}
begin
cur:=va;
let va take place of the oldest string in the tabu list;
best_to_far:=va;
end else
begin
cur:=vn;
let vn take place of the oldest string in the tabu list;
end;
until (termination-condition);
end;
以上程序中有關鍵的幾點:
(1)禁忌對象:可以選取當前的值(cur)作為禁忌對象放進tabu list,也可以把和當然值在同一「等高線」上的都放進tabu list。
(2)為了降低計算量,禁忌長度和禁忌表的集合不宜太大,但是禁忌長度太小容易循環搜索,禁忌表太小容易陷入「局部極優解」。
(3)上述程序段中對best_to_far的操作是直接賦值為最優的「解禁候選解」,但是有時候會出現沒有大於best_to_far的,候選解也全部被禁的「死鎖」狀態,這個時候,就應該對候選解中最佳的進行解禁,以能夠繼續下去。
(4)終止准則:和模擬退火,遺傳演算法差不多,常用的有:給定一個迭代步數;設定與估計的最優解的距離小於某個范圍時,就終止搜索;當與最優解的距離連續若干步保持不變時,終止搜索;
禁忌搜索是對人類思維過程本身的一種模擬,它通過對一些局部最優解的禁忌(也可以說是記憶)達到接納一部分較差解,從而跳出局部搜索的目的。 人工神經網路(Artificial Neural Network,ANN)
神經網路從名字就知道是對人腦的模擬。它的神經元結構,它的構成與作用方式都是在模仿人腦,但是也僅僅是粗糙的模仿,遠沒有達到完美的地步。和馮·諾依曼機不同,神經網路計算非數字,非精確,高度並行,並且有自學習功能。
生命科學中,神經細胞一般稱作神經元,它是整個神經結構的最基本單位。每個神經細胞就像一條胳膊,其中像手掌的地方含有細胞核,稱作細胞體,像手指的稱作樹突,是信息的輸入通路,像手臂的稱作軸突,是信息的輸出通路;神經元之間錯綜復雜地連在一起,互相之間傳遞信號,而傳遞的信號可以導致神經元電位的變化,一旦電位高出一定值,就會引起神經元的激發,此神經元就會通過軸突傳出電信號。
而如果要用計算機模仿生物神經,就需要人工的神經網路有三個要素:(1)形式定義人工神經元;(2)給出人工神經元的連接方式,或者說給出網路結構;(3)給出人工神經元之間信號強度的定義。
歷史上第一個人工神經網路模型稱作M-P模型,非常簡單:
其中,表示神經元i在t時刻的狀態,為1表示激發態,為0表示抑制態;是神經元i和j之間的連接強度;表示神經元i的閾值,超過這個值神經元才能激發。
這個模型是最簡單的神經元模型。但是功能已經非常強大:此模型的發明人McCulloch和Pitts已經證明,不考慮速度和實現的復雜性,它可以完成當前數字計算機的任何工作。
以上這個M-P模型僅僅是一層的網路,如果從對一個平面進行分割的方面來考慮的話,M-P網路只能把一個平面分成個半平面,卻不能夠選取特定的一部分。而解決的辦法就是「多層前向網路」。
為了讓這種網路有合適的權值,必須給網路一定的激勵,讓它自己學習,調整。一種方法稱作「向後傳播演算法(Back Propagation,BP)」,其基本思想是考察最後輸出解和理想解的差異,調整權值,並把這種調整從輸出層開始向後推演,經過中間層,達到輸入層。
可見,神經網路是通過學習來達到解決問題的目的,學習沒有改變單個神經元的結構和工作方式,單個神經元的特性和要解決的問題之間也沒有直接聯系,這里學習的作用是根據神經元之間激勵與抑制的關系,改變它們的作用強度。學習樣本中的任何樣品的信息都包含在網路的每個權值之中。
BP演算法中有考察輸出解和理想解差異的過程,假設差距為w,則調整權值的目的就是為了使得w最小化。這就又包含了前文所說的「最小值」問題。一般的BP演算法採用的是局部搜索,比如最速下降法,牛頓法等,當然如果想要得到全局最優解,可以採用模擬退火,遺傳演算法等。當前向網路採用模擬退火演算法作為學習方法的時候,一般成為「波爾茲曼網路」,屬於隨機性神經網路。
在學習BP演算法學習的過程中,需要已經有一部分確定的值作為理想輸出,這就好像中學生在學習的時候,有老師的監督。如果沒有了監督,人工神經網路該怎麼學習?
就像沒有了宏觀調控,自由的市場引入了競爭一樣,有一種學習方法稱作「無監督有競爭的學習」。在輸入神經元i的若干個神經元之間開展競爭,競爭之後,只有一個神經元為1,其他均為0,而對於失敗的神經元,調整使得向對競爭有利的方向移動,則最終也可能在一次競爭中勝利;
人工神經網路還有反饋網路如Hopfield網路,它的神經元的信號傳遞方向是雙向的,並且引入一個能量函數,通過神經元之間不斷地相互影響,能量函數值不斷下降,最後能給出一個能量比較低的解。這個思想和模擬退火差不多。
人工神經網路應用到演算法上時,其正確率和速度與軟體的實現聯系不大,關鍵的是它自身的不斷學習。這種思想已經和馮·諾依曼模型很不一樣。 粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。該演算法最初是受到飛鳥集群活動的規律性啟發,進而利用群體智能建立的一個簡化模型。粒子群演算法在對動物集群活動行為觀察基礎上,利用群體中的個體對信息的共享使整個群體的運動在問題求解空間中產生從無序到有序的演化過程,從而獲得最優解。
PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。但是它沒有遺傳演算法用的交叉(crossover)以及變異(mutation),而是粒子在解空間追隨最優的粒子進行搜索。同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域。
PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。
PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。
PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個極值來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 模擬退火,遺傳演算法,禁忌搜索,神經網路在解決全局最優解的問題上有著獨到的優點,並且,它們有一個共同的特點:都是模擬了自然過程。模擬退火思路源於物理學中固體物質的退火過程,遺傳演算法借鑒了自然界優勝劣汰的進化思想,禁忌搜索模擬了人類有記憶過程的智力過程,神經網路更是直接模擬了人腦。
它們之間的聯系也非常緊密,比如模擬退火和遺傳演算法為神經網路提供更優良的學習演算法提供了思路。把它們有機地綜合在一起,取長補短,性能將更加優良。
這幾種智能演算法有別於一般的按照圖靈機進行精確計算的程序,尤其是人工神經網路,是對計算機模型的一種新的詮釋,跳出了馮·諾依曼機的圈子,按照這種思想來設計的計算機有著廣闊的發展前景

2. 粒子群演算法為什麼具有全局搜索能力

粒子群演算法中每個粒子都記憶自己的最好位置,即從進化開始到現在這個粒子能使目標函數達到最大或是最小的那個時刻粒子的位置。個體極值就是粒子在最好位置所得到的目標函數的值。全局極值就是在所有粒子的個體極值中最大或是最小的那個值,與只對應的就是全局最優粒子的位置。對有約束的優化函數,一般是將約束條件加入到目標函數中,然後計算總體的值,以此來作為評價標准。
粒子群演算法,也稱粒子群優化演算法(Particle Swarm Optimization),縮寫為 PSO, 是近年來發展起來的一種新的進化演算法(Evolutionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。粒子群演算法是一種並行演算法。

3. 粒子群演算法的演算法介紹

如前所述,PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。
PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。
PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個極值來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 在找到這兩個最優值時,粒子根據如下的公式來更新自己的速度和新的位置:
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = present[] + v[] (b)
v[] 是粒子的速度, w是慣性權重,present[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2.
程序的偽代碼如下
For each particle
____Initialize particle
END
Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End
____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained
在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax

4. 什麼是粒子群演算法

粒子群演算法,也稱粒子群優化演算法(Partical Swarm Optimization),縮寫為 PSO, 是近年來發展起來的一種新的進化演算法((Evolu2tionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和遺傳演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。 PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。 PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 粒子公式 在找到這兩個最優值時,粒子根據如下的公式來更新自己的速度和新的位置: v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, w是慣性權重,persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2. 程序的偽代碼如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax

5. 粒子群演算法屬於什麼學科

粒子群演算法屬於計算智能的范疇,如果按照學科分的話當然是計算機學科。
另外粒子群演算法是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。
——————————————————————————
另外關於計算智能的相關介紹便可以了解
計算智能的主要方法有人工神經網路、遺傳演算法、遺傳程序、演化程序、局部搜索、模擬退火等等。這些方法具有以下共同的要素:自適應的結構、隨機產生的或指定的初始狀態、適應度的評測函數、修改結構的操作、系統狀態存儲器、終止計算的條件、指示結果的方法、控制過程的參數。計算智能的這些方法具有自學習、自組織、自適應的特徵和簡單、通用、魯棒性強、適於並行處理的優點。在並行搜索、聯想記憶、模式識別、知識自動獲取等方面得到了廣泛的應用。
典型的代表如遺傳演算法、免疫演算法、模擬退火演算法、蟻群演算法、微粒群演算法(也就是粒子群演算法,翻譯不同罷了),都是一種仿生演算法,基於「從大自然中獲取智慧」的理念,通過人們對自然界獨特規律的認知,提取出適合獲取知識的一套計算工具。總的來說,通過自適應學習的特性,這些演算法達到了全局優化的目的。

6. 我利用粒子群演算法工具箱求解最優值時陷入了局部最優該如何解決

粒子群陷入局部最優在所難免,建議可以採取加大權重因子的方法,或者一些改進的粒子群演算法會提出對收斂的種群進行干擾,從而產生新的種群,另外可以採用量子粒子群演算法,在局部最優問題上解決的還算可以

7. 粒子群演算法的參數設置

從上面的例子我們可以看到應用PSO解決優化問題的過程中有兩個重要的步驟: 問題解的編碼和適應度函數 不需要像遺傳演算法一樣是二進制編碼(或者採用針對實數的遺傳操作.例如對於問題 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接編碼為 (x1, x2, x3), 而適應度函數就是f(x). 接著我們就可以利用前面的過程去尋優.這個尋優過程是一個疊代過程, 中止條件一般為設置為達到最大循環數或者最小錯誤
PSO中並沒有許多需要調節的參數,下面列出了這些參數以及經驗設置
粒子數: 一般取 20 – 40. 其實對於大部分的問題10個粒子已經足夠可以取得好的結果, 不過對於比較難的問題或者特定類別的問題, 粒子數可以取到100 或 200
粒子的長度: 這是由優化問題決定, 就是問題解的長度
粒子的范圍: 由優化問題決定,每一維可以設定不同的范圍
Vmax: 最大速度,決定粒子在一個循環中最大的移動距離,通常設定為粒子的范圍寬度,例如上面的例子里,粒子 (x1, x2, x3) x1 屬於 [-10, 10], 那麼 Vmax 的大小就是 20
學習因子: c1 和 c2 通常等於 2. 不過在文獻中也有其他的取值. 但是一般 c1 等於 c2 並且范圍在0和4之間
中止條件: 最大循環數以及最小錯誤要求. 例如, 在上面的神經網路訓練例子中, 最小錯誤可以設定為1個錯誤分類, 最大循環設定為2000, 這個中止條件由具體的問題確定.
全局PSO和局部PSO: 我們介紹了兩種版本的粒子群優化演算法: 全局版和局部版. 前者速度快不過有時會陷入局部最優. 後者收斂速度慢一點不過很難陷入局部最優. 在實際應用中, 可以先用全局PSO找到大致的結果,再用局部PSO進行搜索. 代碼來自2008年數學建模東北賽區B題, #includestdafx.h#include<math.h>#include<time.h>#include<iostream>#include<fstream>usingnamespacestd;intc1=2;//加速因子intc2=2;//加速因子doublew=1;//慣性權重doubleWmax=1;//最大慣性權重doubleWmin=0.6;//最小慣性權重intKmax=110;//迭代次數intGdsCnt;//物資總數intconstDim=10;//粒子維數intconstPNum=50;//粒子個數intGBIndex=0;//最優粒子索引doublea=0.6;//適應度調整因子doubleb=0.5;//適應度調整因子intXup[Dim];//粒子位置上界數組intXdown[Dim]=;//粒子位置下界數組intValue[Dim];//初始急需度數組intVmax[Dim];//最大速度數組classPARTICLE;//申明粒子節點voidCheck(PARTICLE&,int);//約束函數voidInput(ifstream&);//輸入變數voidInitial();//初始化相關變數doubleGetFit(PARTICLE&);//計算適應度voidCalculateFit();//計算適應度voidBirdsFly();//粒子飛翔voidRun(ofstream&,int=2000);//運行函數classPARTICLE//微粒類{public:intX[Dim];//微粒的坐標數組intXBest[Dim];//微粒的最好位置數組intV[Dim];//粒子速度數組doubleFit;//微粒適合度doubleFitBest;//微粒最好位置適合度};PARTICLEParr[PNum];//粒子數組intmain()//主函數{ofstreamoutf(out.txt);ifstreaminf(data.txt);//關聯輸入文件inf>>GdsCnt;//輸入物資總數Input(inf);Initial();Run(outf,100);system(pause);return0;}voidCheck(PARTICLE&p,intcount)//參數:p粒子對象,count物資數量{srand((unsigned)time(NULL));intsum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}while(sum>count){p.X[rand()%Dim]--;sum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}}voidInput(ifstream&inf)//以inf為對象輸入數據{for(inti=0;i<Dim;i++)inf>>Xup;for(inti=0;i<Dim;i++)inf>>Value;}voidInitial()//初始化數據{GBIndex=0;srand((unsigned)time(NULL));//初始化隨機函數發生器for(inti=0;i<Dim;i++)Vmax=(int)((Xup-Xdown)*0.035);for(inti=0;i{for(intj=0;j<Dim;j++){Parr.X[j]=(int)(rand()/(double)RAND_MAX*(Xup[j]-Xdown[j])-Xdown[j]+0.5);Parr.XBest[j]=Parr.X[j];Parr.V[j]=(int)(rand()/(double)RAND_MAX*(Vmax[j]-Vmax[j]/2));}Parr.Fit=GetFit(Parr);Parr.FitBest=Parr.Fit;if(Parr.Fit>Parr[GBIndex].Fit)GBIndex=i;}}doubleGetFit(PARTICLE&p)//計算對象適應度{doublesum=0;for(inti=0;i<Dim;i++)for(intj=1;j<=p.X;j++)sum+=(1-(j-1)*a/(Xup-b))*Value;returnsum;}voidCalculateFit()//計算數組內各粒子的適應度{for(inti=0;i{Parr.Fit=GetFit(Parr);}}voidBirdsFly()//粒子飛行尋找最優解{srand((unsigned)time(NULL));staticintk=10;w=Wmax-k*(Wmax-Wmin)/Kmax;k++;for(inti=0;i{for(intj=0;j<Dim;j++){Parr.V[j]=(int)(w*Parr.V[j]);Parr.V[j]+=(int)(c1*rand()/(double)RAND_MAX*(Parr.XBest[j]-Parr.X[j]);Parr.V[j]+=c2*rand()/(double)RAND_MAX*(Parr[GBIndex].XBest[j]-Parr.X[j]));}}Check(Parr,GdsCnt);for(intj=0;j<Dim;j++){Parr.X[j]+=Parr.V[j];Check(Parr,GdsCnt);}CalculateFit();for(inti=0;i{if(Parr.Fit>=Parr.FitBest){Parr.FitBest=Parr.Fit;for(intj=0;j<Dim;j++)Parr.XBest[j]=Parr.X[j];}}GBIndex=0;for(inti=0;i{if(Parr.FitBest>Parr[GBIndex].FitBest&&i!=GBIndex)GBIndex=i;}}voidRun(ofstream&outf,intnum)//令粒子以規定次數num飛行{for(inti=0;i<num;i++){BirdsFly();outf<<(i+1)<<ends<for(intj=0;j<Dim;j++)outf<outf<<endl;}cout<<Done!<<endl;}

8. 粒子群演算法的優缺點

優點:PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。同遺傳演算法比較,PSO的優勢在於簡單容易實現,並且沒有許多參數需要調整。

缺點:在某些問題上性能並不是特別好。網路權重的編碼而且遺傳運算元的選擇有時比較麻煩。最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。

(8)粒子群演算法屬於局部搜索嗎擴展閱讀:

注意事項:

基礎粒子群演算法步驟較為簡單。粒子群優化演算法是由一組粒子在搜索空間中運動,受其自身的最佳過去位置pbest和整個群或近鄰的最佳過去位置gbest的影響。

對於有些改進演算法,在速度更新公式最後一項會加入一個隨機項,來平衡收斂速度與避免早熟。並且根據位置更新公式的特點,粒子群演算法更適合求解連續優化問題。

9. 粒子群優化演算法和多模態優化演算法有什麼區別

摘 要:,粒子群演算法據自己的速度來決定搜索過程,只有最優的粒子把信息給予其他的粒子,整個搜索更新過程是跟隨當前最優解的過程,所有的粒子還可以更快的收斂於最優解。由於微粒群演算法簡單,容易實現,與其它求解約束優化問題的方法相比較,具有一定的優勢。實驗結果表明,對於無約束的非線性求解,粒子群演算法表現出較好的收斂性和健壯性。
關鍵詞:粒子群演算法;函數優化;極值尋優
0 引言
非線性方程的求根問題是多年來數學家努力解決的問題之一。長期以來,人們已找出多種用於解決方程求根的方法,例如牛頓法、弦割法、拋物線法等。然而,很多傳統的方法僅能運用於相應的小的問題集,推廣性相對較差。對於一個現實世界中的優化問題,必須嘗試很多不同的方法,甚至要發明相應的新的方法來解決,這顯然是不現實的。我們需要另外的方法來克服這樣的困難。
粒子群演算法是一種現代啟發式演算法,具有推廣性強、魯棒性高等特點[1]。該演算法具有群體智能、內在並行性、迭代格式簡單、可快速收斂到最優解所在區域等優點[2]。本文採用粒子群演算法,對函數的極值進行尋優計算,實現了對函數的極值求解。
1 粒子群演算法
1.1 基本原理
粒子群演算法(PSO)是一種基於群體的隨機優化技術,它的思想來源於對鳥群捕食行為的研究與模擬。粒子群演算法與其它基於群體的進化演算法相類似,選用「群體」和「進化」的概念,按照個體的適應度值進行操作,也是一種基於迭代的尋優技術。區別在於,粒子群演算法中沒有交叉變異等進化運算元,而是將每個個體看作搜索空間中的微粒,每個微粒沒有重量和體積,但都有自己的位置向量、速度向量和適應度值。所有微粒以一定的速度飛行於搜索空間中,其中的飛行速度是由個體飛行經驗和群體的飛行經驗動態調整,通過追蹤當前搜索到的最優值來尋找全局最優值。
1.2 參數選擇
粒子群演算法需要修改的參數很少,但對參數的選擇卻十分敏感。El-Gallad A, El-Hawary M, Sallam A, Kalas A[3]主要對演算法中的種群規模、迭代次數和粒子速度的選擇方法進行了詳細分析,利用統計方法對約束優化問題的求解論證了這 3 個參數對演算法性能的影響,並給出了具有一定通用性的3 個參數選擇原則[4]。
種群規模:通常根據待優化問題的復雜程度確定。
最大速度:決定粒子在一次迭代中的最大移動距離,通常設定為不超過粒子的范圍寬度。
加速常數:加速常數c1和c2通常是由經驗值決定的,它代表粒子向pbest和gbest靠攏的加速項的權重。一般取值為:c1=c2=2。
中止條件:達到最大迭代次數或得到最小誤差要求,通常要由具體問題確定。
慣性權重:慣性權重能夠針對待優化問題調整演算法的局部和全局搜索能力。當該值較大時有利於全局搜索,較小時有利於局部搜索。所以通常在演算法開始時設置較大的慣性權重,以便擴大搜索范圍、加快收斂。而隨著迭代次數的增加逐漸減小慣性權重的值,使其進行精確搜索,避免跳過最優解。
1.3 演算法步驟
PSO演算法步驟如下:
Step1:初始化一個規模為 m 的粒子群,設定初始位置和速度。
初始化過程如下:
(1)設定群體規模m;
(2)對任意的i,s,在[-xmax, xmax]內均勻分布,產生初始位置xis;
(3)對任意的i,s,在[-vmax, vmax]內均勻分布,產生速度vis;
(4)對任意的i,設yi=xi,保存個體。
Step2:計算每個粒子的適應度值。
Step3:對每個粒子的適應度值和得到過的最好位置pis的適應度值進行比較,若相對較好,則將其作為當前的最好位置。
Step4:對每個粒子的適應度值和全局得到過的最好位置pgs的適應度值進行比較,若相對較好,則將其作為當前的全局最好位置。
Step5:分別對粒子的所在位置和速度進行更新。
Step6:如果滿足終止條件,則輸出最優解;否則,返回Step2。
1.4 粒子群演算法函數極值求解
粒子群演算法優化是計算機智能領域,除蟻群演算法外的另一種基於群體智能的優化演算法。粒子群演算法是一種群體智能的煙花計算技術。與遺傳演算法相比,粒子群演算法沒有遺傳演算法的選擇(Selection)、交叉(Crossover)、變異(Mutation)等操作,而是通過粒子在解空間追隨最優的粒子進行搜索。
粒子群演算法流程如圖所示:

粒子群為由n個粒子組成的種群X = (X1,X2,X3,…Xn).
第i個粒子表示一個D維向量Xi = (X1,X2,X3,…XD)T.
第i個粒子的速度為Vi = (Vi1,Vi2,Vi3,…ViD)T.
個體極值為Pi = (Pi1,Pi2,Pi3,…PiD)T.
全局極值為Pg = (Pg1,Pg2,Pg3,…PgD)T.
速度更新為,式中,c1和c2為其兩個學習因子的參數值;r1和r2為其兩個隨機值。
位置更新為.
2 粒子群演算法應用舉例
2.1 實驗問題
這是一個無約束函數的極值尋優,對於Ackley函數,
.
其中c1=20,e=2. 71289。
2.2 實驗步驟
對於Ackley函數圖形,選取一個凹峰進行分析,程序運行結果如圖所示。

圖1 Ackley函數圖形
可以看出,選取區間內的Ackley函數圖形只有一個極小值點。因此,對於該段函數進行尋優,不會陷入局部最小。採用粒子群演算法對該函數進行極值尋優。
首先,進行初始化粒子群,編寫的MATLAB代碼如下:
% 初始化種群
for i=1:sizepop
x1 = popmin1 (popmax1-popmin1)*rand;
% 產生隨機個體
x2 = popmin2 (popmax2-popmin2)*rand;
pop(i,1) = x1; % 保存產生的隨機個體
pop(i,2) = x2;
fitness(i) = fun([x1,x2]); % 適應度值
V(i,1) = 0; % 初始化粒子速度
V(i,2) = 0;
end
程序運行後所產生的個體值為:
表1 函數個體值

然後,根據待尋優的目標函數,計算適應度值。待尋優的目標函數為:
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2x(2)^2)/2))-exp((cos(2*pi*x(1)) cos(2*pi*x(2)))/2) 20 2.71289;
根據每一組個體,通過目標函數,得到的適應度值為:

表2 函數適應度值

搜索個體最優極值,即搜索最小的適應度值,我們可利用MATLAB繪圖將所有個體的適應度值繪成plot圖查看相對最小值。

圖3 函數適應度plot圖
從圖中可看出,當個體=20時,得到相對最小值,在程序中,將其保存下來。
之後進行迭代尋優,直到滿足終止條件。
最後,得到的最優值為:

圖4 MATLAB運行得到結果
迭代後得到的運行結果圖如下:

圖5 迭代曲線圖
2.3 實驗結果
通過圖5中可看出,該函數的尋優是收斂的,最優個體和實際情況較吻合。因此,採用粒子群演算法進行函數極值尋優,快速、准確且魯棒性較好。
3 結論
本文闡述了粒子群演算法求解最化問題的過程,實驗結果表明了該演算法對於無約束問題的可行性。與其它的進化演算法相比,粒子群演算法容易理解、編碼簡單、容易實現。但是參數的設置對於該演算法的性能卻有很大的影響,例如控制收斂,避免早熟等。在未來的工作中,將努力於將其它計算智能演算法或其它優化技術應用於粒子群演算法中,以進一步提高粒子群演算法的性能。

10. 怎麼判斷粒子群優化演算法有沒有局部收斂

轉載請註明:來自網路知道——小七的風
首先說,標準的粒子群演算法是通過控制權重系數ω的線性下降來使得種群收斂的,從收斂圖上看,如果在多次迭代後(比如100次迭代後)如果最優粒子的適應度值不再變化即認為此時演算法已經達到收斂。
理論上,粒子群通過自身的更新機制使得每個粒子在每次的迭代中會向該粒子的歷史最優位置以及全局粒子位置的中間(或周圍)位置靠近,這樣雖然保證了粒子搜索的高效性(假設最優點存在於全局最優點與歷史最優點的中間位置)但勢必帶來了粒子搜索范圍的減少,所以容易出現局部收斂,並且已有相關文獻證明了這不是一個全局最優的演算法。
還有一種簡單的做法是證偽,即不去直接證明粒子群是一個全局最優,而是試圖去找到一個點,這個點的適應度值比粒子群找到的全局最優點的適應度值更好,這樣就間接說明了演算法沒有找到全局最優點(可以採用純隨機,直到找到比粒子群提供的全局最優點好為止)

閱讀全文

與粒子群演算法屬於局部搜索嗎相關的資料

熱點內容
支持dsd硬解壓音效卡 瀏覽:768
怎麼查看u盤加密區 瀏覽:181
台電加密是什麼格式 瀏覽:155
php論壇版塊在哪個文件夾 瀏覽:442
暗黑的伺服器為什麼維護 瀏覽:624
android內存溢出的原因 瀏覽:18
標志307的壓縮比是多少 瀏覽:636
伺服器啟動為什麼叫三聲 瀏覽:997
追風箏的人英文pdf 瀏覽:940
解壓小熊手機殼 瀏覽:346
成都市區建成面積演算法 瀏覽:661
智能家居單片機 瀏覽:97
買男裝用什麼app好 瀏覽:855
文件夾合並了怎麼拆開 瀏覽:260
波段副圖源碼無未來函數 瀏覽:89
livecn伺服器地址 瀏覽:259
程序員這個工作真的很吃香嗎 瀏覽:847
程序員和數學分析師待遇 瀏覽:681
壓縮氣彈簧怎麼拆 瀏覽:326
華為公有雲伺服器添加虛擬ip 瀏覽:211