『壹』 怎樣用python將數組里的數從高到低排序
1、首先我們定義一個列表輸入一串大小不一的數字。
『貳』 python生成20個隨機數列表,前10個升序後10個降序
importrandom
list1=[]
foriinrange(20):
list1.append(random.random())
listL=sorted(list1[:10],reverse=False)
listR=sorted(list1[10:],reverse=True)
print(listL+listR)
『叄』 深入理解python中的排序sort
進行一個簡單的升序排列直接調用sorted()函數,函數將會返回一個排序後的列表:
sorted函數不會改變原有的list,而是返回一個新的排好序的list
如果你想使用就地排序,也就是改變原list的內容,那麼可以使用list.sort()的方法,這個方法的返回值是None。
另一個區別是,list.sort()方法只是list也就是列表類型的方法,只可以在列表類型上調用。而sorted方法則是可以接受任何可迭代對象。
list.sort()和sorted()函數都有一個key參數,可以用來指定一個函數來確定排序的一個優先順序。比如,這個例子就是根據大小寫的優先順序進行排序:
key參數的值應該是一個函數,這個函數接受一個參數然後返回以一個key,這個key就被用作進行排序。這個方法很高效,因為對於每一個輸入的記錄只需要調用一次key函數。
一個常用的場景就是當我們需要對一個復雜對象的某些屬性進行排序時:
再如:
前面我們看到的利用key-function來自定義排序,同時Python也可以通過operator庫來自定義排序,而且通常這種方法更好理解並且效率更高。
operator庫提供了 itemgetter(), attrgetter(), and a methodcaller()三個函數
同時還支持多層排序
list.sort()和sorted()都有一個boolean類型的reverse參數,可以用來指定升序和降序排列,默認為false,也就是升序排序,如果需要降序排列,則需將reverse參數指定為true。
排序的穩定性指,有相同key值的多個記錄進行排序之後,原始的前後關系保持不變
我們可以看到python中的排序是穩定的。
我們可以利用這個穩定的特性來進行一些復雜的排序步驟,比如,我們將學生的數據先按成績降序然後年齡升序。當排序是穩定的時候,我們可以先將年齡升序,再將成績降序會得到相同的結果。
傳統的DSU(Decorate-Sort-Undecorate)的排序方法主要有三個步驟:
因為元組是按字典序比較的,比較完grade之後,會繼續比較i。
添加index的i值不是必須的,但是添加i值有以下好處:
現在python3提供了key-function,所以DSU方法已經不常用了
python2.x版本中,是利用cmp參數自定義排序。
python3.x已經將這個方法移除了,但是我們還是有必要了解一下cmp參數
cmp參數的使用方法就是指定一個函數,自定義排序的規則,和java等其他語言很類似
也可以反序排列
python3.x中可以用如下方式:
『肆』 面試必會八大排序演算法(Python)
一、插入排序
介紹
插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據。
演算法適用於少量數據的排序,時間復雜度為O(n^2)。
插入排演算法是穩定的排序方法。
步驟
①從第一個元素開始,該元素可以認為已經被排序
②取出下一個元素,在已經排序的元素序列中從後向前掃描
③如果該元素(已排序)大於新元素,將該元素移到下一位置
④重復步驟3,直到找到已排序的元素小於或者等於新元素的位置
⑤將新元素插入到該位置中
⑥重復步驟2
排序演示
演算法實現
二、冒泡排序
介紹
冒泡排序(Bubble Sort)是一種簡單的排序演算法,時間復雜度為O(n^2)。
它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。
這個演算法的名字由來是因為越小的元素會經由交換慢慢「浮」到數列的頂端。
原理
循環遍歷列表,每次循環找出循環最大的元素排在後面;
需要使用嵌套循環實現:外層循環控制總循環次數,內層循環負責每輪的循環比較。
步驟
①比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。
②對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。在這一點,最後的元素應該會是最大的數。
③針對所有的元素重復以上的步驟,除了最後一個。
④持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。
演算法實現:
三、快速排序
介紹
快速排序(Quicksort)是對冒泡排序的一種改進,借用了分治的思想,由C. A. R. Hoare在1962年提出。
基本思想
快速排序的基本思想是:挖坑填數 + 分治法。
首先選出一個軸值(pivot,也有叫基準的),通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。
實現步驟
①從數列中挑出一個元素,稱為 「基準」(pivot);
②重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊);
③對所有兩個小數列重復第二步,直至各區間只有一個數。
排序演示
演算法實現
四、希爾排序
介紹
希爾排序(Shell Sort)是插入排序的一種,也是縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法,時間復雜度為:O(1.3n)。
希爾排序是基於插入排序的以下兩點性質而提出改進方法的:
·插入排序在對幾乎已經排好序的數據操作時, 效率高, 即可以達到線性排序的效率;
·但插入排序一般來說是低效的, 因為插入排序每次只能將數據移動一位。
基本思想
①希爾排序是把記錄按下標的一定量分組,對每組使用直接插入演算法排序;
②隨著增量逐漸減少,每組包1含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法被終止。
排序演示
演算法實現
五、選擇排序
介紹
選擇排序(Selection sort)是一種簡單直觀的排序演算法,時間復雜度為Ο(n2)。
基本思想
選擇排序的基本思想:比較 + 交換。
第一趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;
第二趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;
以此類推,第 i 趟,在待排序記錄ri ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。
排序演示
選擇排序的示例動畫。紅色表示當前最小值,黃色表示已排序序列,藍色表示當前位置。
演算法實現
六、堆排序
介紹
堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。
利用數組的特點快速指定索引的元素。
基本思想
堆分為大根堆和小根堆,是完全二叉樹。
大根堆的要求是每個節點的值不大於其父節點的值,即A[PARENT[i]] >=A[i]。
在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
排序演示
演算法實現
七、歸並排序
介紹
歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
基本思想
歸並排序演算法是將兩個(或兩個以上)有序表合並成一個新的有序表,即把待排序序列分為若干個子序列,每個子序列是有序的。然後再把有序子序列合並為整體有序序列。
演算法思想
自上而下遞歸法(假如序列共有n個元素)
① 將序列每相鄰兩個數字進行歸並操作,形成 floor(n/2)個序列,排序後每個序列包含兩個元素;
② 將上述序列再次歸並,形成 floor(n/4)個序列,每個序列包含四個元素;
③ 重復步驟②,直到所有元素排序完畢。
自下而上迭代法
① 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列;
② 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;
③ 比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置;
④ 重復步驟③直到某一指針達到序列尾;
⑤ 將另一序列剩下的所有元素直接復制到合並序列尾。
排序演示
演算法實現
八、基數排序
介紹
基數排序(Radix Sort)屬於「分配式排序」,又稱為「桶子法」。
基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m) ,其中 r 為採取的基數,而m為堆數。
在某些時候,基數排序法的效率高於其他的穩定性排序法。
基本思想
將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。然後,從最低位開始,依次進行一次排序。這樣從最低位排序一直到最高位排序完成以後,數列就變成一個有序序列。
基數排序按照優先從高位或低位來排序有兩種實現方案:
MSD(Most significant digital) 從最左側高位開始進行排序。先按k1排序分組, 同一組中記錄, 關鍵碼k1相等,再對各組按k2排序分成子組, 之後, 對後面的關鍵碼繼續這樣的排序分組, 直到按最次位關鍵碼kd對各子組排序後. 再將各組連接起來,便得到一個有序序列。MSD方式適用於位數多的序列。
LSD (Least significant digital)從最右側低位開始進行排序。先從kd開始排序,再對kd-1進行排序,依次重復,直到對k1排序後便得到一個有序序列。LSD方式適用於位數少的序列。
排序效果
演算法實現
九、總結
各種排序的穩定性、時間復雜度、空間復雜度的總結:
平方階O(n²)排序:各類簡單排序:直接插入、直接選擇和冒泡排序;
從時間復雜度來說:
線性對數階O(nlog₂n)排序:快速排序、堆排序和歸並排序;
O(n1+§))排序,§是介於0和1之間的常數:希爾排序 ;
線性階O(n)排序:基數排序,此外還有桶、箱排序。
『伍』 python怎麼使用sort
Python中的sort()方法用於數組排序,本文以實例形式對此加以詳細說明:
一、基本形式
列表有自己的sort方法,其對列表進行原址排序,既然是原址排序,那顯然元組不可能擁有這種方法,因為元組是不可修改的。
x = [4, 6, 2, 1, 7, 9]
x.sort()
print x # [1, 2, 4, 6, 7, 9]
如果需要一個排序好的副本,同時保持原有列表不變,怎麼實現呢
x =[4, 6, 2, 1, 7, 9]
y = x[ : ]
y.sort()
print y #[1, 2, 4, 6, 7, 9]
print x #[4, 6, 2, 1, 7, 9]
注意:y = x[:] 通過分片操作將列表x的元素全部拷貝給y,如果簡單的把x賦值給y:y = x,y和x還是指向同一個列表,並沒有產生新的副本。
另一種獲取已排序的列表副本的方法是使用sorted函數:
x =[4, 6, 2, 1, 7, 9]
y = sorted(x)
print y #[1, 2, 4, 6, 7, 9]
print x #[4, 6, 2, 1, 7, 9]
sorted返回一個有序的副本,並且類型總是列表,如下:
print sorted('Python') #['P', 'h', 'n', 'o', 't', 'y']
二、自定義比較函數
可以定義自己的比較函數,然後通過參數傳遞給sort方法:
def comp(x, y):
if x < y:
return 1
elif x > y:
return -1
else:
return 0
nums = [3, 2, 8 ,0 , 1]
nums.sort(comp)
print nums # 降序排序[8, 3, 2, 1, 0]
nums.sort(cmp) # 調用內建函數cmp ,升序排序
print nums # 降序排序[0, 1, 2, 3, 8]
三、可選參數
sort方法還有兩個可選參數:key和reverse
1、key在使用時必須提供一個排序過程總調用的函數:
x = ['mmm', 'mm', 'mm', 'm' ]
x.sort(key = len)
print x # ['m', 'mm', 'mm', 'mmm']
2、reverse實現降序排序,需要提供一個布爾值:
y = [3, 2, 8 ,0 , 1]
y.sort(reverse = True)
print y #[8, 3, 2, 1, 0]
以上是雲棲社區小編為您精心准備的的內容,在雲棲社區的博客、問答、公眾號、人物、課程等欄目也有的相關內容,歡迎繼續使用右上角搜索按鈕進行搜索python , 方法 sort python sort方法、python魔術方法詳解、python實例方法詳解、list.sort 使用方法、c list.sort 使用方法,以便於您獲取更多的相關知識。
『陸』 python怎麼降序排列
最為簡單的方法是利用表理解,生成一個新的字典 必須要保證鍵值是一一對應的 d = {'one':1, 'two':2, 'three':3, 'four':4}di = {v:k for k,v in d.items()}di。
import pandas as pd。
s=pd.Series(range(10))。
s.sort_values(ascending=False)。
演算法穩定性
冒泡排序就是把小的元素往前調或者把大的元素往後調。比較是相鄰的兩個元素比較,交換也發生在這兩個元素之間。所以,如果兩個元素相等,是不會再交換的;如果兩個相等的元素沒有相鄰,那麼即使通過前面的兩兩交換把兩個相鄰起來,這時候也不會交換,所以相同元素的前後順序並沒有改變,所以冒泡排序是一種穩定排序演算法。
『柒』 python用戶輸入若干個整數,按降序列印輸出在一行(使用空格間隔),並給出中位數
# coding=gbk
import numpy as np
inputStr = input("請輸入多個整數,以空格分隔:")
# 使用列表推導式將輸入的內容以空格分隔,如果有小數,則通過int函數變為整數
input_lists = [int(num) for num in inputStr.split(" ")]
# 通過sort方法,並使用參數reverse=True,來將列表的數據以降序排列
input_lists.sort(reverse=True)
# 由於通過",".join()連接的列表不能有整數元素,所以通過列表推導式將列表每個元素通過str轉為字元串後,再聯接為以逗號分隔的字元串
print(",".join([str(num) for num in input_lists]))
# 使用numpy的median函數來得到中位數
print(np.median(input_lists))
『捌』 用python對10個數進行排序
sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last')
by:可以填入字元串或者字元串組成的列表。也就是說,如果axis=0,那麼by="列名";如果axis=1,那麼by="行名"。
axis:{0 or 『index』, 1 or 『columns』}, default 0,意思就是如果axis=0,就按照索引排序,即縱向排序;如果axis=1,則按列排序,即橫向排序。默認是axis=0。
ascending:輸入布爾型,True是升序,False是降序,也可以可以是[True,False],即第一個欄位升序,第二個欄位降序 。
inplace: 輸入布爾型,是否用排序後的數據框替換現有的數據框(這個在之前的文章寫過很多次了~)
kind:排序的方法,{『quicksort』, 『mergesort』, 『heapsort』},默認是使用『quicksort』。這個參數用的比較少,大家可以試一試。
na_position :{『first』, 『last』},缺失值的排序,也就說決定將缺失值放在數據的最前面還是最後面。first是排在前面,last是排在後面,默認是用last。
創建數據表:
scores=pd.DataFrame([[87,56,85],[46,87,97],[34,65,86]],
columns=['jack','rose','mike'])
scores
『rose』這一列進行降序排序:
df_sc=scores.sort_values(by='rose',ascending=False)
df_sc
『mike』這一列進行升序排序:
df_sc=scores.sort_values(by='mike',ascending=True)
df_sc
對第0行進行升序排序:
scores.sort_values(by=0,axis=1,ascending=True)
我們再嘗試對第1行進行升序,第0行進行降序:
scores.sort_values(by=[1,0],axis=1,ascending=[True,False]
『玖』 Python將列表[8,41,33,13]中的最後兩個元素依次移到列表首部,並將列表降序排序後輸出
ls = [8, 41, 33, 13]
temp = ls[0] # 讓一個臨時變數temp指向第一個元素,第一個元素的位置就空出來了
ls[0] = ls[len(ls) - 2] # 第一個元素的位置指向倒數第二個元素,倒數第二的位置空了
ls[len(ls) - 2] = temp # 讓倒數第二的位置指向臨時變數temp指向的值
print(ls)
temp = ls[0]
ls[0] = ls[len(ls) - 1] # 再把最後一個元素用同樣的方法挪到首部
ls[len(ls) - 1] = temp
print(ls)
ls.sort(reverse=True) # 對移動後的列表降序排列
print(ls)
『拾』 Python刪除最高分最低分次數前2的評委,計算平均分,降序排序怎麼實現
先保存在列表中再去除掉列表中最大和最小,代碼如下:
n = int(input('請輸入刪除高分低分前幾位:'))contents
[95,90,100,80,75,85,75,60,65,80,90,95,85,60]for i in range(n):#for循環除去最大最小
contents.remove(max(contents))
contents.remove(min(contents))print(sorted(contents,reverse=True))#排序
print(sum(contents)/len(contents))#算平均
Python由荷蘭數學和計算機科學研究學會的Guido van Rossum於1990 年代初設計,作為一門叫做ABC語言的替代品。
Python提供了高效的高級數據結構,還能簡單有效地面向對象編程。Python語法和動態類型,以及解釋型語言的本質,使它成為多數平台上寫腳本和快速開發應用的編程語言,隨著版本的不斷更新和語言新功能的添加,逐漸被用於獨立的、大型項目的開發。
Python解釋器易於擴展,可以使用C或C++(或者其他可以通過C調用的語言)擴展新的功能和數據類型。Python 也可用於可定製化軟體中的擴展程序語言。Python豐富的標准庫,提供了適用於各個主要系統平台的源碼或機器碼。
2021年10月,語言流行指數的編譯器Tiobe將Python加冕為最受歡迎的編程語言,20年來首次將其置於Java、C和JavaScript之上。