導航:首頁 > 源碼編譯 > 常用演算法大全

常用演算法大全

發布時間:2022-10-15 23:23:18

Ⅰ 常用的演算法表示形式有哪些

演算法的常用表示方法有三種:

1、使用自然語言描述演算法;

2、使用流程圖描述演算法;

3、使用偽代碼描述演算法。

演算法是指對解決方案的准確、完整的描述,是解決問題的一系列清晰的指令。該演算法代表了描述解決問題的策略和機制的系統方式。也就是說,對於某個標准輸入,可以在有限的時間內獲得所需的輸出。

如果一個演算法有缺陷或不適合某個問題,執行該演算法將無法解決該問題。不同的演算法可能使用不同的時間、空間或效率來完成相同的任務。一個演算法的優劣可以用空間復雜度和時間復雜度來衡量。

Ⅱ 小學數學簡便計算公式

總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。

①加法

加法交換律:a+b=b+a;

加法結合律:a+b+c=a+(b+c)=(a+b)+c;

②減法

a-b=-(b-a)

a-b-c=a-(b+c)

減法有一個口訣:加括弧,變符號。

③乘法

乘法交換律:a x b=b x a;

乘法結合律:a x b x c=a x (b x c);

乘法分配律:a x (b±c)=a x b±a x c;

小學數學試題中常考的一種題型-計算復雜數式。

經常就會用到乘法分配律,來提取公因數,簡化計算。

【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19

分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。

7.19x1.36+3.13x2.81+1.77x7.19

=7.19x(1.36+1.77)+3.13x2.81

=7.19x3.13+3.13x2.81

=(7.19+2.81)x3.13

=10x3.13

=31.3

④除法

a÷b÷c=a÷(b x c)(b,c不等於0);

a x b÷c=a÷cxb(c不等於0);

以上公式是解四則運算題目的基本關系式。

靈活學習,靈活運用。

它們除了正著用,有時候還得會倒著用。

【例2】計算:47.9x6.6+529x0.34;

分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+52.9x3.4(3.4已經湊出來了)

=47.9x6.6+(47.9+5)x3.4

=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)

=47.9x(6.6+3.4)+17

=496

注意:例2題目中我們將乘法分配律倒著使用。

52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4

除此之外還用到了一個特別的公式。

529x0.34=529÷10x10x0.34

這個公式總結出來,即:

a x b=a÷c x c x b(c不等於0)

Ⅲ 孕產期計算方法大全

孕產期計算方法大全

孕產期計算方法大全,對於年輕准媽媽來說,如何准確的算出懷孕的時間和孕產期是一件很困惑的事情。因此一般是去問醫生,不過再看了孕產期計算方法大全後,相信你自己能算出來。

孕產期計算方法大全1

孕產期時間的計算方法。對年輕女性來說,如何才可以准確的計算出懷孕的時間和孕產期是很困惑的事情。

專家介紹說從醫學上來講,以末次月經的第一天起計算預產期,其整個孕期共為280天,10個妊娠月(每個妊娠月為28天)。

孕產期時間的計算方法。對年輕女性來說,如何才可以准確的計算出懷孕的時間和孕產期是很困惑的事情。專家介紹說從醫學上來講,以末次月經的第一天起計算預產期,其整個孕期共為280天,10個妊娠月(每個妊娠月為28天)。

孕婦在妊娠38-42周內分娩,均為足月分娩。由於每位女性月經周期長短不一,所以推測的預產期與實際預產期有1-2周的出入也是正常的。

【預產期最主要的計算方法有以下幾種】

一、根據B超檢查推算

醫生做B超時測得胎頭雙頂間徑、頭臀長度及股骨長度即可估算出胎齡,並推算出預產期(此方法大多作為醫生B超檢查診斷應用)。

二、根據基礎體溫曲線計算

將基礎體溫曲線的低溫段的最後一天作為排卵日,從排卵日向後推算264-268天,或加38周。

三、根據末次月經計算

末次月經日期的月份加9或減3,為預產期月份數;天數加7,為預產期日。例如:

例一:某女士的末次月經是1999年3月13日,其預產期約為:1999年12月20日。

例二:某女士的末次月經是1999年5月28日,其預產期約為:2000年3月5日孕婦也可以從末次月經第一天起向後推算到第280天就是預產期。

四、從孕吐開始的時間推算

反應孕吐一般出現在懷孕6周末,就是末次月經後42天,由此向後推算至280天即為預產期。

五、根據胎動日期計算

如你記不清末次月經日期,可以依據胎動日期來進行推算。一般胎動開始於懷孕後的18-20周。計算方法為:初產婦是胎動日加20周;經產婦是胎動日加22周。

孕期計算時間的方法,通過這些介紹,你現在的心裡是不是已經有數了呢。在此預祝各位準媽媽順利產下自己的小寶寶,擁有幸福美滿的家庭。

孕產期計算方法大全2

孕婦預產期計算

主要的計算方法有以下幾種:根據末次月經計算:為預產期月份數;天數加

7,為預產期日。孕婦的預產期=末次月經+xxx天。

1、最後一次月經計演算法:將最後一次月經來潮的月份減掉3(不足者加上9)或月份直接加9也可,日數加上

7,即為預產期。預產期是按末次月經算的:月份加9或減

3,日子加7。

其中以最後一次月經開始日計算預產期的方法最為常用。希望大家都學會准確的計算自己的月份,做到心裡有數,信心百倍的迎接小baby!

求Excel計算孕婦分娩日期和生產時孕周的公式

足月妊娠是280天,即40周!!

4、超聲波(B超)檢測法:對於最後一次月經開始日不確定的人而言,這是較准確的方法。預產期的計算方法為:從末次月經第一天起,月份減去3或者加上

9,比如,某孕婦末次月經為2003年8月15日,那麼她預產期的計算是(8-3)=5月份,(15+7)=22日,預產期應該是2004年5月22日。

孕婦和家屬學會算預產期十分有必要,它可以讓媽媽們充分做好物質上及心理上的准備,從容地分娩。最後一次來月經是2006年1月10日,那預產期就是2006年10月19日(套公式月=1+

9,日=10+7+2)利用懷孕日歷來計算許多婦產科醫院會有廠商印製的「預產期大圓盤」分送給孕婦。

懷孕後孕產期怎麼算

均為足月分娩。根據B超檢查推算:醫生做B超時測得胎頭雙頂間徑、頭臀長度及股骨長度即可估算出胎齡,並推算出預產期(此方法大多作為醫生B超檢查診斷應用)。

例如:張女士的'末次月經是1999年3月13日,其預產期約為:1999年12月20日。李女士的末次月經是1999年5月28日,其預產期約為:2000年3月5日孕婦也可以從末次月經第一天起向後推算到第280天就是預產期。)

專家師表示:「此法相對只適用在有記錄基礎體溫習慣的婦女;排卵日的尋找方式很簡單,就是在基礎體溫曲線表上尋找最低溫的那一天。計算方法為:初產婦是胎動日加20周;經產婦是胎動日加22周。

怎樣計算預產期

根據基礎體溫曲線計算:將基礎體溫曲線的低溫段的最後一天作為排卵日,或加38周。從孕吐開始的時間推算:反應孕吐一般出現在懷孕6周末,就是末次月經後42天,由此向後推算至280天即為預產期。

使用基礎體溫者知道排卵日,則可計算出受精日。另外,庄曉婷醫師補充說:「是第幾次生產也會影響胎動感覺的周數,通常初產婦的第一次感覺胎動在第20周;而經產婦則在第18周。

月分演算法:從最後一次月經第一天算起,4個孕周28天為懷孕一個月,這是醫學上的計算月份方法,很多時候看到准媽媽們搞不清楚自己的月份,

就是因為把懷孕月份標准和實際月份搞混了,經常和醫生算得有出入。(另有較簡單的尼格爾規則;月份≧4時,預產期=月份-

3,預產期=月份+

9,月經周期非28天者,則必須修正。

孕婦的孕產期怎麼計算

你的預產期是:公歷2012年1月29號,農歷的正月初八!

3、由子宮大小推定:根據子宮底的高度測定懷孕周數。俗話說「十月懷胎一朝分娩」,就是指的這個意思。9個月+7天從最後一次月經算起,九個月在家一個禮拜就是預產期了,即40周!」

以超音波來計算若懷疑自己是否懷孕,最好的方法是盡快至婦產科檢查,醫院通常先行驗尿,驗孕棒若可清楚呈現二條線,通常已懷孕4周;

再輔以超音波檢查,若已可照出「胚囊」,代表懷孕5周;若已可照出「心跳和胚胎」,那就表示已有7周妊娠了。

預產期的計算方法

孕期280天共十個月。其實就這么簡單,28天算一個月,而不是30天或者31天。以基礎體溫表來計算=排卵日+280天(再按每月實際的天數去推算。由於可計算出胎囊大小與胎兒頭至臀部的長度,

以及胎頭兩側頂骨間徑數值,據此值即可推算出懷孕周數與預產期。它的計算原理同月經周期演算法,圓盤上通常會有二個明顯的指針,只要調整好「最後月經第一天」指針,「預產期」自然會被指出。

由於每位女性月經周期長短不一,所以推測的預產期與實際預產期有1-2周的出入也是正常的。

預產期怎麼算

【:em

25:】 【:em

25:】 【:em

25:】 足月妊娠是280天,即40周!)例如:最後一次來月經的第一天是2006年8月10日,那預產期就是2007年5月17日。例如:最後一次月經為3月5日開始,預產期則為當年12月12日。

2、以受精日計算:若知道受精日,從這天開始經過38周(266天)即為預產期。

預產期按農歷還是陽歷算

醫學上規定,以末次月經的第一天起計算預產期,其整個孕期共為280天,10個妊娠月(每個妊娠月為28天)。

預產期是從末次月經首日開始算的,末次月經首日往後推280天,就是預產期。這比從最後一次月經開始日計算預產期的方法更精確。

【:em

25:】 【:em

25:】 【:em

25:】 以校正過最後一次月經來計算28天為月經周期=最後一次來月經的第一天+280天(再按每月實際的天數去推算。供參考。

9個月+7天從最後一次月經算起,九個月在家一個禮拜就是預產期了,懷孕期通常是280天。預產期根據孕婦的月經周期,排卵時間,胎兒的成熟度有差異,

一般地講,月經周期不足一個月的婦女,臨產日子多提前,月經周期超過一個月的孕婦,臨產日子多推後。再依照周數來推算。

Ⅳ 常見的相似度度量演算法




本文目錄:




  定義在兩個向量(兩個點)上:點x和點y的歐式距離為:

  常利用歐幾里得距離描述相似度時,需要取倒數歸一化,sim = 1.0/(1.0+distance),利用numpy實現如下:

python實現歐式距離

  從名字就可以猜出這種距離的計算方法了。想像你在曼哈頓要從一個十字路口開車到另外一個十字路口,駕駛距離是兩點間的直線距離嗎?顯然不是,除非你能穿越大樓。實際駕駛距離就是這個「曼哈頓距離」。而這也是曼哈頓距離名稱的來源, 曼哈頓距離也稱為城市街區距離(City Block distance)。

  (1)二維平面兩點a(x1,y1)與b(x2,y2)間的曼哈頓距離

  (2)兩個n維向量a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的曼哈頓距離

   python實現曼哈頓距離:


  國際象棋玩過么?國王走一步能夠移動到相鄰的8個方格中的任意一個。那麼國王從格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走試試。你會發現最少步數總是max( | x2-x1 | , | y2-y1 | ) 步 。有一種類似的一種距離度量方法叫切比雪夫距離。

  (1)二維平面兩點a(x1,y1)與b(x2,y2)間的切比雪夫距離

  (2)兩個n維向量a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的切比雪夫距離

   python實現切比雪夫距離:


  閔氏距離不是一種距離,而是一組距離的定義。

  兩個n維變數a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的閔可夫斯基距離定義為:

  其中p是一個變參數。

  當p=1時,就是曼哈頓距離

  當p=2時,就是歐氏距離

  當p→∞時,就是切比雪夫距離

  根據變參數的不同,閔氏距離可以表示一類的距離。

  閔氏距離,包括曼哈頓距離、歐氏距離和切比雪夫距離都存在明顯的缺點。

  舉個例子:二維樣本(身高,體重),其中身高范圍是150 190,體重范圍是50 60,有三個樣本:a(180,50),b(190,50),c(180,60)。那麼a與b之間的閔氏距離(無論是曼哈頓距離、歐氏距離或切比雪夫距離)等於a與c之間的閔氏距離,但是身高的10cm真的等價於體重的10kg么?因此用閔氏距離來衡量這些樣本間的相似度很有問題。

  簡單說來,閔氏距離的缺點主要有兩個:

  (1)將各個分量的量綱(scale),也就是「單位」當作相同的看待了。

  (2)沒有考慮各個分量的分布(期望,方差等)可能是不同的。


  標准歐氏距離的定義

  標准化歐氏距離是針對簡單歐氏距離的缺點而作的一種改進方案。標准歐氏距離的思路:既然數據各維分量的分布不一樣,好吧!那我先將各個分量都「標准化」到均值、方差相等吧。均值和方差標准化到多少呢?這里先復習點統計學知識吧,假設樣本集X的均值(mean)為m,標准差(standard deviation)為s,那麼X的「標准化變數」表示為:

  而且標准化變數的數學期望為0,方差為1。因此樣本集的標准化過程(standardization)用公式描述就是:

  標准化後的值 = ( 標准化前的值 - 分量的均值 ) /分量的標准差

  經過簡單的推導就可以得到兩個n維向量a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的標准化歐氏距離的公式:

  如果將方差的倒數看成是一個權重,這個公式可以看成是一種加權歐氏距離(Weighted Euclidean distance)。


  有M個樣本向量X1~Xm,協方差矩陣記為S,均值記為向量μ,則其中樣本向量X到u的馬氏距離表示為:

  而其中向量Xi與Xj之間的馬氏距離定義為:

  若協方差矩陣是單位矩陣(各個樣本向量之間獨立同分布),則公式就成了:

  也就是歐氏距離了。

  若協方差矩陣是對角矩陣,公式變成了標准化歐氏距離。

  馬氏距離的優缺點:量綱無關,排除變數之間的相關性的干擾。


  幾何中夾角餘弦可用來衡量兩個向量方向的差異,機器學習中借用這一概念來衡量樣本向量之間的差異。

  在二維空間中向量A(x1,y1)與向量B(x2,y2)的夾角餘弦公式:

  兩個n維樣本點a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夾角餘弦

  類似的,對於兩個n維樣本點a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用類似於夾角餘弦的概念來衡量它們間的相似程度。

  即:

  夾角餘弦取值范圍為[-1,1]。夾角餘弦越大表示兩個向量的夾角越小,夾角餘弦越小表示兩向量的夾角越大。當兩個向量的方向重合時夾角餘弦取最大值1,當兩個向量的方向完全相反夾角餘弦取最小值-1。

python實現餘弦相似度:


  兩個等長字元串s1與s2之間的漢明距離定義為將其中一個變為另外一個所需要作的最小替換次數。例如字元串「1111」與「1001」之間的漢明距離為2。

  應用:信息編碼(為了增強容錯性,應使得編碼間的最小漢明距離盡可能大)。

python實現漢明距離:


  兩個集合A和B的交集元素在A,B的並集中所佔的比例,稱為兩個集合的傑卡德相似系數,用符號J(A,B)表示。

  傑卡德相似系數是衡量兩個集合的相似度一種指標。

  與傑卡德相似系數相反的概念是傑卡德距離(Jaccard distance)。傑卡德距離可用如下公式表示:

  傑卡德距離用兩個集合中不同元素占所有元素的比例來衡量兩個集合的區分度。

  可將傑卡德相似系數用在衡量樣本的相似度上。

  樣本A與樣本B是兩個n維向量,而且所有維度的取值都是0或1。例如:A(0111)和B(1011)。我們將樣本看成是一個集合,1表示集合包含該元素,0表示集合不包含該元素。

  p :樣本A與B都是1的維度的個數

  q :樣本A是1,樣本B是0的維度的個數

  r :樣本A是0,樣本B是1的維度的個數

  s :樣本A與B都是0的維度的個數

  這里p+q+r可理解為A與B的並集的元素個數,而p是A與B的交集的元素個數。

  而樣本A與B的傑卡德距離表示為:


  皮爾遜相關系數即為相關系數 ( Correlation coefficient )與相關距離(Correlation distance)

  相關系數的定義

  相關系數是衡量隨機變數X與Y相關程度的一種方法,相關系數的取值范圍是[-1,1]。相關系數的絕對值越大,則表明X與Y相關度越高。當X與Y線性相關時,相關系數取值為1(正線性相關)或-1(負線性相關)。








1. 機器學習中的相似性度量

2. 推薦演算法入門(1)相似度計算方法大全

3. Python Numpy計算各類距離

4. 皮爾遜積矩相關系數

Ⅳ 除法的簡便演算法怎麼算

除法簡算有三種:
1、連除可以交換除數位置,但被除數不能動,商不變:
2、連除可以把除數先乘起來再用被除數去除,商不變:
3、有除號和+/-可合並被除數。
給個好評呦!

Ⅵ 機器學習一般常用的演算法有哪些

機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。

一、線性回歸

一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。

二、Logistic 回歸

它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。

三、線性判別分析(LDA)

在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。

四、決策樹

決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。

五、樸素貝葉斯

其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。

六、K近鄰演算法

K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。

七、Boosting 和 AdaBoost

首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。

八、學習向量量化演算法(簡稱 LVQ)

學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求

Ⅶ C語言演算法有哪些 並舉例和分析

演算法大全(C,C++)
一、 數論演算法

1.求兩數的最大公約數
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

2.求兩數的最小公倍數
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;

3.素數的求法
A.小范圍內判斷一個數是否為質數:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;

B.判斷longint范圍內的數是否為素數(包含求50000以內的素數表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}

function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}

二、圖論演算法

1.最小生成樹

A.Prim演算法:

procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{尋找離生成樹最近的未加入頂點k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {將頂點k加入生成樹}
{生成樹中增加一條新的邊k到closest[k]}
{修正各點的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal演算法:(貪心)

按權值遞增順序刪去圖中的邊,若不形成迴路則將此邊加入最小生成樹。
function find(v:integer):integer; {返回頂點v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;

procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定義n個集合,第I個集合包含一個元素I}
p:=n-1; q:=1; tot:=0; {p為尚待加入的邊數,q為邊集指針}
sort;
{對所有邊按權值遞增排序,存於e[I]中,e[I].v1與e[I].v2為邊I所連接的兩個頂點的序號,e[I].len為第I條邊的長度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

2.最短路徑

A.標號法求解單源點最短路徑:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指頂點i到源點的最短路徑}
mark:array[1..maxn] of boolean;

procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1為源點}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {對每一個已計算出最短路徑的點}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed演算法求解所有頂點對之間的最短路徑:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路徑上j的前驅結點}
for k:=1 to n do {枚舉中間結點}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra 演算法:

var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路徑上I的前驅結點}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循環一次加入一個離1集合最近的結點並調整其他結點的參數}
min:=maxint; u:=0; {u記錄離1集合最近的結點}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

3.計算圖的傳遞閉包

Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

4.無向圖的連通分量

A.深度優先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {對結點I染色}
c[i]:=color;
dfs(I,color);
end;
end;

B 寬度優先(種子染色法)

5.關鍵路徑

幾個定義: 頂點1為源點,n為匯點。
a. 頂點事件最早發生時間Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 頂點事件最晚發生時間 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 邊活動最早開始時間 Ee[I], 若邊I由<j,k>表示,則Ee[I] = Ve[j];
d. 邊活動最晚開始時間 El[I], 若邊I由<j,k>表示,則El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,則活動j為關鍵活動,由關鍵活動組成的路徑為關鍵路徑。
求解方法:
a. 從源點起topsort,判斷是否有迴路並計算Ve;
b. 從匯點起topsort,求Vl;
c. 算Ee 和 El;

6.拓撲排序

找入度為0的點,刪去與其相連的所有邊,不斷重復這一過程。
例 尋找一數列,其中任意連續p項之和為正,任意q 項之和為負,若不存在則輸出NO.

7.迴路問題

Euler迴路(DFS)
定義:經過圖的每條邊僅一次的迴路。(充要條件:圖連同且無奇點)

Hamilton迴路
定義:經過圖的每個頂點僅一次的迴路。

一筆畫
充要條件:圖連通且奇點個數為0個或2個。

9.判斷圖中是否有負權迴路 Bellman-ford 演算法

x[I],y[I],t[I]分別表示第I條邊的起點,終點和權。共n個結點和m條邊。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚舉每一條邊}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;

10.第n最短路徑問題

*第二最短路徑:每舉最短路徑上的每條邊,每次刪除一條,然後求新圖的最短路徑,取這些路徑中最短的一條即為第二最短路徑。
*同理,第n最短路徑可在求解第n-1最短路徑的基礎上求解。

三、背包問題

*部分背包問題可有貪心法求解:計算Pi/Wi
數據結構:
w[i]:第i個背包的重量;
p[i]:第i個背包的價值;

1.0-1背包: 每個背包只能使用一次或有限次(可轉化為一次):

A.求最多可放入的重量。
NOIP2001 裝箱問題
有一個箱子容量為v(正整數,o≤v≤20000),同時有n個物品(o≤n≤30),每個物品有一個體積 (正整數)。要求從 n 個物品中,任取若千個裝入箱內,使箱子的剩餘空間為最小。
l 搜索方法
procere search(k,v:integer); {搜索第k個物品,剩餘空間為v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]為前n個物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
實現:將最優化問題轉化為判定性問題
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 邊界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
優化:當前狀態只與前一階段狀態有關,可降至一維。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大價值。
F[I,j] 為容量為I時取前j個背包所能獲得的最大價值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }

C.求恰好裝滿的情況數。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;

2.可重復背包

A求最多可放入的重量。
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
狀態轉移方程為
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大價值。
USACO 1.2 Score Inflation
進行一次競賽,總時間T固定,有若干種可選擇的題目,每種題目可選入的數量不限,每種題目有一個ti(解答此題所需的時間)和一個si(解答此題所得的分數),現要選擇若干題目,使解這些題的總時間在T以內的前提下,所得的總分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量為i時取前j種背包所能達到的最大值。
*實現:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.

C.求恰好裝滿的情況數。
Ahoi2001 Problem2
求自然數n本質不同的質數和的表達式的數目。
思路一,生成每個質數的系數的排列,在一一測試,這是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此過程計算當前系數的計算結果,now為結果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系數}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,遞歸搜索效率較高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }

思路三:可使用動態規劃求解
USACO1.2 money system
V個物品,背包容量為n,求放法總數。
轉移方程:

Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {讀入第一個物品的重量}
i:=0; {a[i]為背包容量為i時的放法總數}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定義第一個物品重的整數倍的重量a值為1,作為初值}
for i:=2 to v do
begin
read(now);
update; {動態更新}
end;
writeln(a[n]);

四、排序演算法

A.快速排序:

procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {將當前序列在中間位置的數定義為中間數}
repeat
while a[i]<mid do inc(i); {在左半部分尋找比中間數大的數}
while a[j]>mid do dec(j);{在右半部分尋找比中間數小的數}
if i<=j then begin {若找到一組與排序目標不一致的數對則交換它們}
swap(a[i],a[j]);
inc(i);dec(j); {繼續找}
end;
until i>j;
if l<j then qsort(l,j); {若未到兩個數的邊界,則遞歸搜索左右區間}
if i<r then qsort(i,r);
end;{sort}

B.插入排序:

思路:當前a[1]..a[i-1]已排好序了,現要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}

C.選擇排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;

D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比較相鄰元素的關系}
end;

E.堆排序:
procere sift(i,m:integer);{調整以i為根的子樹成為堆,m為結點總數}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉樹中結點i的左孩子為2*i,右孩子為2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]與a[k+1]中較大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {將根放在合適的位置}
end;

procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;

Ⅷ c語言(高分)

1.相對於遞歸演算法,遞推演算法免除了數據進出棧的過程,也就是說,不需要函數不斷的向邊界值靠攏,而直接從邊界出發,直到求出函數值.
比如階乘函數:f(n)=n*f(n-1)
在f(3)的運算過程中,遞歸的數據流動過程如下:
f(3){f(i)=f(i-1)*i}-->f(2)-->f(1)-->f(0){f(0)=1}-->f(1)-->f(2)--f(3){f(3)=6}
而遞推如下:
f(0)-->f(1)-->f(2)-->f(3)
由此可見,遞推的效率要高一些,在可能的情況下應盡量使用遞推.但是遞歸作為比較基礎的演算法,它的作用不能忽視.所以,在把握這兩種演算法的時候應該特別注意.
2.所謂排序,就是使一串記錄,按照其中的某個或某些關鍵字的大小,遞增或遞減的排列起來的操作。
分類
在計算機科學所使用的排序演算法通常被分類為:
計算的復雜度(最差、平均、和最好表現),依據串列(list)的大小(n)。一般而言,好的表現是O。(n log n),且壞的行為是Ω(n2)。對於一個排序理想的表現是O(n)。僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要Ω(n log n)。
記憶體使用量(以及其他電腦資源的使用)
穩定度:穩定排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。也就是一個排序演算法是穩定的,就是當有兩個有相等關鍵的紀錄R和S,且在原本的串列中R出現在S之前,在排序過的串列中R也將會是在S之前。
一般的方法:插入、交換、選擇、合並等等。交換排序包含冒泡排序(bubble sort)和快速排序(quicksort)。選擇排序包含shaker排序和堆排序(heapsort)。
當相等的元素是無法分辨的,比如像是整數,穩定度並不是一個問題。然而,假設以下的數對將要以他們的第一個數字來排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在這個狀況下,有可能產生兩種不同的結果,一個是依照相等的鍵值維持相對的次序,而另外一個則沒有:
(3, 1) (3, 7) (4, 1) (5, 6) (維持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改變)
不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地時作為穩定。作這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個物件間之比較,就會被決定使用在原先資料次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。
排列演算法列表
在這個表格中,n是要被排序的紀錄數量以及k是不同鍵值的數量。
穩定的
冒泡排序(bubble sort) — O(n2)
雞尾酒排序 (Cocktail sort, 雙向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 額外 記憶體
計數排序 (counting sort) — O(n+k); 需要 O(n+k) 額外 記憶體
歸並排序 (merge sort)— O(n log n); 需要 O(n) 額外記憶體
原地歸並排序 — O(n2)
二叉樹排序 (Binary tree sort) — O(n log n); 需要 O(n) 額外記憶體
鴿巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 額外記憶體
基數排序 (radix sort)— O(n·k); 需要 O(n) 額外記憶體
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 額外記憶體
不穩定
選擇排序 (selection sort)— O(n2)
希爾排序 (shell sort)— O(n log n) 如果使用最佳的現在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望時間, O(n2) 最壞情況; 對於大的、亂數串列一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情況時間, 需要 額外的 O(n + k) 空間, 也需要找到最長的遞增子序列(longest increasing subsequence)
不實用的排序演算法
Bogo排序 — O(n × n!) 期望時間, 無窮的最壞情況。
Stupid sort — O(n3); 遞回版本需要 O(n2) 額外記憶體
Bead sort — O(n) or O(√n), 但需要特別的硬體
Pancake sorting — O(n), 但需要特別的硬體
排序的演算法
排序的演算法有很多,對空間的要求及其時間效率也不盡相同。下面列出了一些常見的排序演算法。這裡面插入排序和冒泡排序又被稱作簡單排序,他們對空間的要求不高,但是時間效率卻不穩定;而後面三種排序相對於簡單排序對空間的要求稍高一點,但時間效率卻能穩定在很高的水平。基數排序是針對關鍵字在一個較小范圍內的排序演算法。
插入排序
冒泡排序
選擇排序
快速排序
堆排序
歸並排序
基數排序
希爾排序
插入排序
插入排序是這樣實現的:
首先新建一個空列表,用於保存已排序的有序數列(我們稱之為"有序列表")。
從原數列中取出一個數,將其插入"有序列表"中,使其仍舊保持有序狀態。
重復2號步驟,直至原數列為空。
插入排序的平均時間復雜度為平方級的,效率不高,但是容易實現。它藉助了"逐步擴大成果"的思想,使有序列表的長度逐漸增加,直至其長度等於原列表的長度。
冒泡排序
冒泡排序是這樣實現的:
首先將所有待排序的數字放入工作列表中。
從列表的第一個數字到倒數第二個數字,逐個檢查:若某一位上的數字大於他的下一位,則將它與它的下一位交換。
重復2號步驟,直至再也不能交換。
冒泡排序的平均時間復雜度與插入排序相同,也是平方級的,但也是非常容易實現的演算法。
選擇排序
選擇排序是這樣實現的:
設數組內存放了n個待排數字,數組下標從1開始,到n結束。
i=1
從數組的第i個元素開始到第n個元素,尋找最小的元素。
將上一步找到的最小元素和第i位元素交換。
如果i=n-1演算法結束,否則回到第3步
選擇排序的平均時間復雜度也是O(n²)的。
快速排序
現在開始,我們要接觸高效排序演算法了。實踐證明,快速排序是所有排序演算法中最高效的一種。它採用了分治的思想:先保證列表的前半部分都小於後半部分,然後分別對前半部分和後半部分排序,這樣整個列表就有序了。這是一種先進的思想,也是它高效的原因。因為在排序演算法中,演算法的高效與否與列表中數字間的比較次數有直接的關系,而"保證列表的前半部分都小於後半部分"就使得前半部分的任何一個數從此以後都不再跟後半部分的數進行比較了,大大減少了數字間不必要的比較。但查找數據得另當別論了。
堆排序
堆排序與前面的演算法都不同,它是這樣的:
首先新建一個空列表,作用與插入排序中的"有序列表"相同。
找到數列中最大的數字,將其加在"有序列表"的末尾,並將其從原數列中刪除。
重復2號步驟,直至原數列為空。
堆排序的平均時間復雜度為nlogn,效率高(因為有堆這種數據結構以及它奇妙的特徵,使得"找到數列中最大的數字"這樣的操作只需要O(1)的時間復雜度,維護需要logn的時間復雜度),但是實現相對復雜(可以說是這里7種演算法中比較難實現的)。
看起來似乎堆排序與插入排序有些相像,但他們其實是本質不同的演算法。至少,他們的時間復雜度差了一個數量級,一個是平方級的,一個是對數級的。
平均時間復雜度
插入排序 O(n2)
冒泡排序 O(n2)
選擇排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
歸並排序 O(n log n)
基數排序 O(n)
希爾排序 O(n1.25)
3.索引查找是在索引表和主表(即線性表的索引存儲結構)上進行的查找。索引查找的過程是:首先根據給定的索引值K1,在索引表上查找出索引值等於KI的索引項,以確定對應予表在主表中的開始位置和長度,然後再根據給定的關鍵字K2,茬對應的子表中查找出關鍵字等於K2的元素(結點)。對索引表或子表進行查找時,若表是順序存儲的有序表,則既可進行順序查找,也可進行二分查找,否則只能進行順序查找。
設數組A是具有mainlist類型的一個主表,數組B是具有inde)dist類型的在主表A 上建立的一個索引表,m為索引表B的實際長度,即所含的索引項的個數,KI和K2分別為給定待查找的索引值和關鍵字(當然它們的類型應分別為索引表中索引值域的類型和主表中關鍵字域在索引存儲中,不僅便於查找單個元素,而且更便於查找一個子表中的全部元素。當需要對一個子袁中的全部元素依次處理時,只要從索引表中查找出該子表的開始位
置即可。由此開始位置可以依次取出該子表中的每一個元素,所以整個查找過程的時間復雜度為,若不是採用索引存儲,而是採用順序存儲,即使把它組織成有序表而進行二分查找時,索引查找一個子表中的所有元素與二分查找一個子表中的所有元素相比。
若在主表中的每個子表後都預留有空閑位置,則索引存儲也便於進行插入和刪除運算,因為其運算過程只涉及到索引表和相應的子表,只需要對相應子表中的元素進行比較和移動,與其它任何子表無關,不像順序表那樣需涉及到整個表中的所有元素,即牽一發而動全身。
在線性表的索引存儲結構上進行插入和刪除運算的演算法,也同查找演算法類似,其過程為:首先根據待插入或刪除元素的某個域(假定子表就是按照此域的值劃分的)的值查找索引表,確定出對應的子表,然後再根據待插入或刪除元素的關鍵字,在該子表中做插入或刪除元素的操作。因為每個子表不是順序存儲,就是鏈接存儲,所以對它們做插入或刪除操作都是很簡單的。
4.插入法排序
#define N 10
#include"stdio.h"
main()
{ int i,j,k,t,a[N];
clrscr();
printf("Please input %d numbers:\n",N);
for(i=0;i<N;i++)
scanf("%d",&a[i]);
for(i=1;i<N;i++)
{
for(j=0;j<i;j++)
{if(a[j]>a[i])
{t=a[i];
for(k=i;k>=j;k--)
a[k]=a[k-1];
a[j]=t;
}
}
}
printf("small to big order:\n");
for(i=0;i<N;i++)
printf("%-2d",a[i]);
printf("\n");
getch();
}

Ⅸ 簡便計算100道及答案

300÷125÷8

=300÷(125×8)

=300÷1000

=0.3

396-96-172-28

=(396-96)-(172+28)

= 300-200

= 100

125*24

= 125*8*3

= 1000*3

= 3000

360÷24

=360÷6÷4

=60÷4

=15

240÷48

=240÷24÷2

=10÷2

=5

800÷32

=800÷8÷4

=100÷4

=25

27+456+73

=(27+73)+456

=100+456

=556

24÷4+56÷4

=(24+56)÷4

=80÷4

=20

2.5×0.7×0.8

=(2.5×0.8)×0.7

=60×0.7

=42

Ⅹ 24演算法大全101072

(2*(7+10))-10
(2*(7+10))-10
(2-10)*(7-10)
(2*(10+7))-10
(2-10)*(7-10)
(2*(10+7))-10
(7-10)*(2-10)
((7+10)*2)-10
(7-10)*(2-10)
((7+10)*2)-10
(10-2)*(10-7)
((10+7)*2)-10
(10-7)*(10-2)
(10-2)*(10-7)
((10+7)*2)-10
(10-7)*(10-2)

閱讀全文

與常用演算法大全相關的資料

熱點內容
移動端微信商城源碼 瀏覽:438
編程貓下一個背景在哪裡 瀏覽:352
javaclasstype 瀏覽:232
樂高編程和樂高課的延伸 瀏覽:350
蘋果手機怎麼切換app美國賬號 瀏覽:861
編譯程序輸入一個字元串 瀏覽:407
圓命令畫法 瀏覽:308
如果給電腦e盤文件加密 瀏覽:801
javaswing項目 瀏覽:778
androidsdksetup 瀏覽:1005
pdf怎麼設置中文 瀏覽:128
安卓手機用什麼軟體看倫敦金 瀏覽:966
魅族文件夾無名稱 瀏覽:792
蘇黎世無人機演算法 瀏覽:876
核桃編程和小碼王的融資 瀏覽:686
微積分教材pdf 瀏覽:727
寫python給微信好友發消息 瀏覽:338
蚊帳自營米加密 瀏覽:422
學校推薦核桃編程 瀏覽:805
湖南農信app怎麼導明細 瀏覽:475