導航:首頁 > 源碼編譯 > a星路徑規劃演算法的優缺點

a星路徑規劃演算法的優缺點

發布時間:2022-11-26 11:44:34

Ⅰ 遺傳演算法路徑規劃是什麼原理

遺傳演算法有相當大的引用。遺傳演算法在游戲中應用的現狀在遺傳編碼時, 一般將瓦片的坐標作為基因進行實數編碼, 染色體的第一個基因為起點坐標, 最後一個基因為終點坐標, 中間的基因為路徑經過的每一個瓦片的坐標。在生成染色體時, 由起點出發, 隨機選擇當前結點的鄰居節點中的可通過節點, 將其坐標加入染色體, 依此循環, 直到找到目標點為止, 生成了一條染色體。重復上述操作, 直到達到指定的種群規模。遺傳演算法的優點:1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。遺傳演算法的缺點:遺傳演算法在進行編碼時容易出現不規范不準確的問題。

Ⅱ 機器人路徑規劃演算法是什麼

機器人路徑規劃演算法是 路徑規劃的目的是在給定起點和目標點的空間里規劃出一條從起點到目標點的無碰撞路徑。

移動機器人的路徑規劃,就是移動機器人在所處的環境中尋找到一條從起始點到目標點的無碰路徑,尤其是移動機器人在沒有人為干預的情況下的自主運動,這就需要各種智能演算法融入到機器人自身控制系統中,使得移動機器人自主做出判斷和決策。

Ⅲ 計算機的演算法具有哪些特性

計算機的演算法具有可行性,有窮性、輸入輸出、確定性。

計算機演算法特點

1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。

2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。

3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。

4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。

5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。

拓展資料:

重要演算法

A*搜尋演算法

俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。

Beam Search

束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法。他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。

二分取中查找演算法

一種在有序數組中查找某一特定元素的搜索演算法。搜索過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜索過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。

Branch and bound

分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。

數據壓縮

數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。

Diffie–Hellman密鑰協商

Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。

Dijkstra』s 演算法

迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。

動態規劃

動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。

歐幾里得演算法

在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。

最大期望(EM)演算法

在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。

快速傅里葉變換(FFT)

快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。

哈希函數

HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。

堆排序

Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。

歸並排序

Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

RANSAC 演算法

RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。

RSA加密演演算法

這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。

並查集Union-find

並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。

Viterbi algorithm

尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。

參考資料:計算機演算法

Ⅳ 演算法決定一切究竟哪種掃地機器人更優秀

【IT168評測】這幾年掃地機器人越來越火,但消費者在選購時,發現似乎每款產品其路徑規劃演算法都不一樣,由最初隨機演算法,到簡單規劃演算法,再到激光slam以及視覺slam演算法等,看得人眼花繚亂,那麼這些演算法究竟都是什麼呢?演算法的好壞是否能決定掃地機器人的優劣呢?

首先我們先要明確的是選購掃地機器人第一需求是:掃的干凈掃得快。

掃的干凈主要取決於清掃系統的設計和吸塵風機的功率,而清掃效率最有力的的保障則是掃地機器人擁有一套非常智能的路徑規劃演算法。

常見的掃地機器人演算法大致分為兩種:隨機覆蓋法和路徑規劃式清掃

優點:多種行走方式加三段式清掃,還會自動感應臟污程度進行重點打掃,基本不留死角,清潔程度更高。

缺點:重復清掃且路徑隨機,代價就是清掃效率較低,更費時間,而且隨機碰撞式的清掃過程看著實在捉急。同時此類產品由於技術原因造價更高,售價自然更是居高不下。另外各品牌技術的不同,會直接影響清掃效果,並不是所有品牌的隨機覆蓋清掃的掃地機器人都能掃得很乾凈。

推薦人群:適合上班族或家中有寵物的用戶購買,雖然清掃時間長但清潔程度更高。

推薦機型:

1、艾羅伯特(iRobot)Roomba961(價格4999元)【點擊查看詳情】

NO、2 路徑規劃式清掃

通過定位系統准確規劃路線,實現規劃式的工字型打掃,清掃路徑十分規矩,不會重復清理,常見的Neato、Proscenic和小米掃地機器人都是這種路徑規劃式清掃。

優點:因為有路徑規劃,所以它很清楚自己掃過了哪些地方,不會重復清掃,使得清潔效率更高、耗時更少。

缺點:清掃方式機械,不重復清掃的話可能會有被遺漏的區域,而且清掃過程中被吹飛的灰塵和垃圾可能被錯過。

推薦人群:家中雜物較多或擁有大戶型的用戶購買,節省時間不鬧心。

推薦機型:

1、米家石頭掃地機器人(價格2499元)【點擊查看詳情】

2、Neato D75掃地機機器人(價格3299元)【點擊查看詳情】

總結:掃地機器人買回家的目的就是會認路、掃得快、掃的干凈,雖然在路徑規劃上解決方案有很多,但其精髓並不是硬體有多厲害,重在其定位系統和演算法。如果一定要小編來比較一下的話,還是建議大家購買路徑規劃式清掃的掃地機器人,價格實惠,方便省心,快捷干凈,能夠滿足大多數人的家庭清潔需要。

Ⅳ 路徑規劃可視圖法特點

可視圖法的優點是概念直觀、簡單,缺點是靈活性不好。當目標點或障礙物或起始點發生變化時,需要對視圖進行重構,而且障礙物的數目越多,演算法越復雜。

Ⅵ A*演算法介紹

姓名:車文揚 學號:16020199006

【嵌牛導讀】:A*演算法的逐步詳解

【嵌牛鼻子】:啟發式演算法

【嵌牛提問】:A*演算法的原理是什麼?

【嵌牛正文】:

A*演算法

路徑規劃是指的是機器人的最優路徑規劃問題,即依據某個或某些優化准則(如工作代價最小、行走路徑最短、行走時間最短等),在工作空間中找到一個從起始狀態到目標狀態能避開障礙物的最優路徑。機器人的路徑規劃應用場景極豐富,最常見如游戲中NPC及控制角色的位置移動,網路地圖等導航問題,小到家庭掃地機器人、無人機大到各公司正爭相開拓的無人駕駛汽車等。

目前路徑規劃演算法分為:

A*演算法原理:

在計算機科學中,A*演算法作為Dijkstra演算法的擴展,因其高效性而被廣泛應用於尋路及圖的遍歷,如星際爭霸等游戲中就大量使用。在理解演算法前,我們需要知道幾個概念:

搜索區域(The Search Area):圖中的搜索區域被劃分為了簡單的二維數組,數組每個元素對應一個小方格,當然我們也可以將區域等分成是五角星,矩形等,通常將一個單位的中心點稱之為搜索區域節點(Node)。

開放列表(Open List):我們將路徑規劃過程中待檢測的節點存放於Open List中,而已檢測過的格子則存放於Close List中。

父節點(parent):在路徑規劃中用於回溯的節點,開發時可考慮為雙向鏈表結構中的父結點指針。

路徑排序(Path Sorting):具體往哪個節點移動由以下公式確定:F(n) = G + H 。G代表的是從初始位置A沿著已生成的路徑到指定待檢測格子的移動開銷。H指定待測格子到目標節點B的估計移動開銷。

啟發函數(Heuristics Function):H為啟發函數,也被認為是一種試探,由於在找到唯一路徑前,我們不確定在前面會出現什麼障礙物,因此用了一種計算H的演算法,具體根據實際場景決定。在我們簡化的模型中,H採用的是傳統的曼哈頓距離(Manhattan Distance),也就是橫縱向走的距離之和。

如下圖所示,綠色方塊為機器人起始位置A,紅色方塊為目標位置B,藍色為障礙物。

我們把要搜尋的區域劃分成了正方形的格子。這是尋路的第一步,簡化搜索區域。這個特殊的方法把我們的搜索區域簡化為了2 維數組。數組的每一項代表一個格子,它的狀態就是可走(walkalbe)或不可走(unwalkable) 。現用A*演算法尋找出一條自A到B的最短路徑,每個方格的邊長為10,即垂直水平方向移動開銷為10。因此沿對角移動開銷約等於14。具體步驟如下:

從起點 A 開始,把它加入到一個由方格組成的open list(開放列表) 中,這個open list像是一個購物清單。Open list里的格子是可能會是沿途經過的,也有可能不經過。因此可以將其看成一個待檢查的列表。查看與A相鄰的8個方格 ,把其中可走的 (walkable) 或可到達的(reachable) 方格加入到open list中。並把起點 A 設置為這些方格的父節點 (parent node) 。然後把 A 從open list中移除,加入到close list(封閉列表) 中,close list中的每個方格都是不需要再關注的。

如下圖所示,深綠色的方格為起點A,它的外框是亮藍色,表示該方格被加入到了close list 。與它相鄰的黑色方格是需要被檢查的,他們的外框是亮綠色。每個黑方格都有一個灰色的指針指向他們的父節點A。

下一步,我們需要從open list中選一個與起點A相鄰的方格。但是到底選擇哪個方格好呢?選F值最小的那個。我們看看下圖中的一些方格。在標有字母的方格中G = 10 。這是因為水平方向從起點到那裡只有一個方格的距離。與起點直接相鄰的上方,下方,左方的方格的G 值都是10 ,對角線的方格G 值都是14 。H值通過估算起點到終點( 紅色方格) 的Manhattan 距離得到,僅作橫向和縱向移動,並且忽略沿途的障礙。使用這種方式,起點右邊的方格到終點有3 個方格的距離,因此H = 30 。這個方格上方的方格到終點有4 個方格的距離( 注意只計算橫向和縱向距離) ,因此H = 40 。

比較open list中節點的F值後,發現起點A右側節點的F=40,值最小。選作當前處理節點,並將這個點從Open List刪除,移到Close List中。

對這個節點周圍的8個格子進行判斷,若是不可通過(比如牆,水,或是其他非法地形)或已經在Close List中,則忽略。否則執行以下步驟:

若當前處理節點的相鄰格子已經在Open List中,則檢查這條路徑是否更優,即計算經由當前處理節點到達那個方格是否具有更小的 G值。如果沒有,不做任何操作。相反,如果G值更小,則把那個方格的父節點設為當前處理節點 ( 我們選中的方格 ) ,然後重新計算那個方格的 F 值和 G 值。

若當前處理節點的相鄰格子不在Open List中,那麼把它加入,並將它的父節點設置為該節點。

按照上述規則我們繼續搜索,選擇起點右邊的方格作為當前處理節點。它的外框用藍線打亮,被放入了close list 中。然後我們檢查與它相鄰的方格。它右側的3個方格是牆壁,我們忽略。它左邊的方格是起點,在close list 中,我們也忽略。其他4個相鄰的方格均在open list 中,我們需要檢查經由當前節點到達那裡的路徑是否更好。我們看看上面的方格,它現在的G值為14 ,如果經由當前方格到達那裡,G值將會為20( 其中10為從起點到達當前方格的G值,此外還要加上從當前方格縱向移動到上面方格的G值10) ,因此這不是最優的路徑。看圖就會明白直接從起點沿對角線移動到那個方格比先橫向移動再縱向移動要好。

當把4個已經在open list 中的相鄰方格都檢查後,沒有發現經由當前節點的更好路徑,因此不做任何改變。接下來要選擇下一個待處理的節點。因此再次遍歷open list ,現在open list中只有7 個方格了,我們需要選擇F值最小的那個。這次有兩個方格的F值都是54,選哪個呢?沒什麼關系。從速度上考慮,選擇最後加入open list 的方格更快。因此選擇起點右下方的方格,如下圖所示。

接下來把起點右下角F值為54的方格作為當前處理節點,檢查其相鄰的方格。我們發現它右邊是牆(牆下面的一格也忽略掉,假定牆角不能直接穿越),忽略之。這樣還剩下 5 個相鄰的方格。當前方格下面的 2 個方格還沒有加入 open list ,所以把它們加入,同時把當前方格設為他們的父親。在剩下的 3 個方格中,有 2 個已經在 close list 中 ( 一個是起點,一個是當前方格上面的方格,外框被加亮的 ) ,我們忽略它們。最後一個方格,也就是當前方格左邊的方格,檢查經由當前方格到達那裡是否具有更小的 G 值。沒有,因此我們准備從 open list 中選擇下一個待處理的方格。

不斷重復這個過程,直到把終點也加入到了open list 中,此時如下圖所示。注意在起點下方2 格處的方格的父親已經與前面不同了。之前它的G值是28並且指向它右上方的方格。現在它的G 值為20 ,並且指向它正上方的方格。這是由於在尋路過程中的某處使用新路徑時G值更小,因此父節點被重新設置,G和F值被重新計算。

那麼我們怎樣得到實際路徑呢?很簡單,如下圖所示,從終點開始,沿著箭頭向父節點移動,直至回到起點,這就是你的路徑。

A*演算法總結:

1. 把起點加入 open list 。

2. 重復如下過程:

a. 遍歷open list ,查找F值最小的節點,把它作為當前要處理的節點,然後移到close list中

b. 對當前方格的 8 個相鄰方格一一進行檢查,如果它是不可抵達的或者它在close list中,忽略它。否則,做如下操作:

□  如果它不在open list中,把它加入open list,並且把當前方格設置為它的父親

□  如果它已經在open list中,檢查這條路徑 ( 即經由當前方格到達它那裡 ) 是否更近。如果更近,把它的父親設置為當前方格,並重新計算它的G和F值。如果你的open list是按F值排序的話,改變後你可能需要重新排序。

c. 遇到下面情況停止搜索:

□  把終點加入到了 open list 中,此時路徑已經找到了,或者

□  查找終點失敗,並且open list 是空的,此時沒有路徑。

3. 從終點開始,每個方格沿著父節點移動直至起點,形成路徑。

Ⅶ A星尋路演算法和Unity自帶的尋路相比有什麼優勢

並沒一種尋路適合所有場合,選擇都是基於需求而定的。

1. A* 演算法與貪婪演算法不一樣,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。
A*是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。
與啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。
使用的地方:
a. 策略游戲的策略搜索
b. 方塊格子游戲中的格子尋路

2. Unity 自帶的導航網格系統
Unity 內置了NavMesh導航網格系統,一般來說導航網格演算法大多是「拐角點演算法」。
效率是比較高的,但是不保證最優解演算法。
使用的地方:
a.游戲場景的怪物尋路
b.動態規避障礙

Ⅷ 流程規劃區路徑選擇及依據

摘要 您好,很高興為您解答該問題!

Ⅸ 機器人路徑規劃中傳統演算法和智能演算法的區別

傳統演算法雖然結果一定是最優解,但是運算量極大,可能會有lag。
相反,採用一定的智能演算法,雖然每次選擇不一定最優,但是基本上都能快速(<=0.1s)判斷,而且只要設定一定的糾錯演算法,總體效率遠高於傳統演算法。

Ⅹ A星尋路演算法和Unity自帶的尋路相比有什麼優勢

在理解Navigation的時候,首先要明確兩個知識點:

AStar:AStar是路點尋路演算法中的一種,同時AStar不屬於貪婪演算法,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。AStar是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。

性能和內存佔用率都還行,和啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。

A Star一般使用場景:

Navigation:網格尋路演算法,嚴格意義上它屬於」拐角點演算法」,效率是比較高的,但是不保證最優解演算法。Navigation相對來說消耗內存更大,性能的話還不錯。

Navigation一般使用場景:

它們二者事件的實現方式和原理都不同。


AStar的話,

閱讀全文

與a星路徑規劃演算法的優缺點相關的資料

熱點內容
java字元串是否迴文 瀏覽:191
sbtspark源碼 瀏覽:397
緩解壓力的飲料有哪些 瀏覽:608
書信選pdf 瀏覽:674
主機和雲伺服器的介面 瀏覽:963
鋼鐵能被壓縮么 瀏覽:90
程序員多久可以提漲工資 瀏覽:814
公司購買阿里雲伺服器幹嘛用 瀏覽:426
php如何導入excel文件 瀏覽:237
同撈同煲哪個app可以看 瀏覽:861
微信查卷優惠券源碼 瀏覽:480
伺服器光碟機線怎麼插 瀏覽:12
新生兒下載哪個app好 瀏覽:487
摩托車壓縮比96 瀏覽:410
linux查看mysql內存 瀏覽:242
福建ca認證伺服器地址 瀏覽:567
三星安全文件夾怎麼取消應用程序 瀏覽:169
偶像來了哪個app能看 瀏覽:252
破解分銷源碼 瀏覽:184
androidudp服務端 瀏覽:771