『壹』 智能計算/計算智能、仿生演算法、啟發式演算法的區別與關系
我一個個講好了,
1)啟發式演算法:一個基於直觀或經驗構造的演算法,在可接受的花費(指計算時間和空間)下給出待解決組合優化問題每一個實例的一個可行解,該可行解與最優解的偏離程度不一定事先可以預計。意思就是說,啟發式演算法是根據經驗或者某些規則來解決問題,它求得的問題的解不一定是最優解,很有可能是近似解。這個解與最優解近似到什麼程度,不能確定。相對於啟發式演算法,最優化演算法或者精確演算法(比如說分支定界法、動態規劃法等則能求得最優解)。元啟發式演算法是啟發式演算法中比較通用的一種高級一點的演算法,主要有遺傳演算法、禁忌搜索演算法、模擬退火演算法、蟻群演算法、粒子群演算法、變鄰域搜索演算法、人工神經網路、人工免疫演算法、差分進化演算法等。這些演算法可以在合理的計算資源條件下給出較高質量的解。
2)仿生演算法:是一類模擬自然生物進化或者群體社會行為的隨機搜索方法的統稱。由於這些演算法求解時不依賴於梯度信息,故其應用范圍較廣,特別適用於傳統方法難以解決的大規模復雜優化問題。主要有:遺傳演算法、人工神經網路、蟻群演算法、蛙跳演算法、粒子群優化演算法等。這些演算法均是模仿生物進化、神經網路系統、螞蟻尋路、鳥群覓食等生物行為。故叫仿生演算法。
3)智能計算:也成為計算智能,包括遺傳演算法、模擬退火演算法、禁忌搜索演算法、進化演算法、蟻群演算法、人工魚群演算法,粒子群演算法、混合智能演算法、免疫演算法、神經網路、機器學習、生物計算、DNA計算、量子計算、模糊邏輯、模式識別、知識發現、數據挖掘等。智能計算是以數據為基礎,通過訓練建立聯系,然後進行問題求解。
所以說,你接觸的很多演算法,既是仿生演算法,又是啟發式演算法,又是智能演算法,這都對。分類方法不同而已。
樓主,我這么辛苦給你打這么字,給我多加點懸賞分吧!謝謝了哈
『貳』 本源量子聯合中科大在量子近似優化演算法研究中取得新進展
近日,本源量子聯合中科大研究團隊在量子近似優化演算法(Quantum Approximate Optimization Algorithm,後稱「QAOA」)的研究中取得最新進展。該研究證明了S-QAOA演算法(Shortcuts to Quantum Approximate Optimization Algorithm,後稱「S-QAOA」)是利用現階段的含雜訊量子計算機求解組合優化問題的理想選擇,進一步推進了量子計算在組合優化問題上的應用。
什麼是組合優化問題?以著名的旅行商問題(TSP)為例,假設有滲乎磨一個旅行商人要拜訪n個城市,他必須選擇所要走的路徑,路徑的限制是每個城市只能拜訪一次,而且最後要回到原來出發的城市。路徑的選擇目標是要求得的路徑長度為所有路徑之中的最小值。這就是一個典型的組合優化問題。
從廣義上講,組合優化問題是涉及從有限的一組對象中找到「最佳」對象的問題。「最佳」是通過給定的評估函數來測量的,該函數將對象映射到某個分數或者成本,目標是找到最高評估分數和最低成本的對象。組合優化往往涉及排序、分類、篩選等問題。
組合優化問題叢斗在現實生活中具有廣泛的應用,比如交通、物流、調度、金融等領域的許多問題都是組合優化問題。並且很多組合優化問題對應的經典演算法都有較高的復雜度,在問題規模較大時,經典計算機難以快速地找到這些問題的最優解。因此,利用量子計算加速組合優化問題的求解具有重要的意義。
在含雜訊的中等規模(NISQ)的量子時代,可靠的量子操作數會受到量子雜訊的限制(目前量子雜訊包括量子退相干、旋轉誤差等)。因此,人們對量子-經典混合演算法很感興趣,這類混合演算法可以藉助經典優化器來優化量子線路中的參數,從而選擇最優的演化路徑,以降低量子線路深度。比較著名的一類量子-經典混合演算法就是量子近似優化演算法(QAOA),它有望為組合優化問題的近似解的求解帶來指數級的加速。
研究人員表示,理論上,如果量子線路足夠深,QAOA可以得到較好的近似解。但由於量子雜訊引起的誤差會隨著量子線路深度的增加而累積,當量子線路深度較大時,QAOA的性能實際上會下降。因此,在當前的量子計算機上展現QAOA演算法的優勢是一項具有挑戰性的任務,降低QAOA演算法的線路深度對於在現階段的量子計算機上展現QAOA演算法的優勢具有重要意義。
為了減少量子電路的深度,研究人員提出了一種新的思路,稱為「Shortcuts to QAOA」:(S-QAOA)。首先,在S-QAOA中考慮了額外的兩體相互作用,在量子電路中加入與YY相互作用相關的雙門以補償非絕熱效應,從而加速量子退火過程,加速QAOA的優化;其次,釋放了兩體相互作用(包括ZZ相互作用和YY相互作用)的參數自由度,增強量子電路的表頃此示能力,從而降低量子線路的深度。數值模擬結果表明,與QAOA相比,S-QAOA在量子線路更淺的情況下可以獲得較好的結果。
研究人員通過引入更多的兩體相互作用和釋放參數自由度來改進QAOA演算法,降低QAOA演算法需要的線路深度,使得QAOA演算法更適合現階段的含雜訊的量子計算機。由於該演算法利用了STA(Shortcuts to adiabaticity)的原理,因此研究人員將其稱為「Shortcuts to QAOA」。
本源量子研究人員表示:「在S-QAOA中,參數自由度的釋放是通過對梯度較大的參數進行進一步的優化,但是是否有更好的方式挑選出最重要的參數做優化,還是值得 探索 和研究的一個方向。我們將在下一步的工作中研究更多的案例,以驗證和完善我們的想法。我們希望我們的方法可以為盡早實現量子優越性提供新的方法和思路。」