導航:首頁 > 源碼編譯 > 基本的優化方法有哪幾種編譯原理

基本的優化方法有哪幾種編譯原理

發布時間:2023-03-31 08:34:05

A. 幾種常用最優化方法

學習和工作中遇到的大多問題都可以建模成一種最優化模型進行求解,比如我們現在學習的機器學習演算法,大部分的機器學習演算法的本質都是建立優化模型,通過最優化方法對目標函數(或損失函數)進行優化,從而訓練出最好的模型。常見的優化方法(optimization)有梯度下降法、牛頓法和擬牛頓法、共軛梯度法等等。

1. 梯度下降法(Gradient Descent)

梯度下降法是最早最簡單,也是最為常用的最優化方法。梯度下降法實現簡單,當目標函數是凸函數時,梯度下降法的解是全局解。一般情況下,其解不保證是全局最優解,梯度下降法的速度也未必是最快的。 梯度下降法的優化思想是用當前位置負梯度方向作為搜索方向,因為該方向為當前位置的最快下降方向,所以也被稱為是」最速下降法「。最速下降法越接近目標值,步長越小,前進越慢。

梯度下降 法的缺點:

(1)靠近極小值時收斂速度減慢;

(2)直線搜索時可能會產生一些問題;

(3)可能會「之字形」地下降。

在機器學習中,基於基本的梯度下降法發展了兩種梯度下降方法,分別為隨機梯度下降法和批量梯度下降法。

比如對一個線性回歸(Linear Logistics)模型,假設下面的h(x)是要擬合的函數,J( )為損失函數, 是參數,要迭代求解的值,求解出來了那最終要擬合的函數h( )就出來了。其中m是訓練集的樣本個數,n是特徵的個數。

1)批量梯度下降法(Batch Gradient Descent,BGD)

(1)將J( )對 求偏導,得到每個theta對應的的梯度:

(2)由於是要最小化風險函數,所以按每個參數 的梯度負方向,來更新每個 :

        (3)從上面公式可以注意到,它得到的是一個全局最優解,但是每迭代一步,都要用到訓練集所有的數據,如果m很大,那麼可想而知這種方法的迭代速度會相當的慢。所以,這就引入了另外一種方法——隨機梯度下降。

對於批量梯度下降法,樣本個數m,x為n維向量,一次迭代需要把m個樣本全部帶入計算,迭代一次計算量為m*n2。

2)隨機梯度下降(Stochastic Gradient Descent,SGD)

        (1)上面的風險函數可以寫成如下這種形式,損失函數對應的是訓練集中每個樣本的粒度,而上面批量梯度下降對應的是所有的訓練樣本:

(2)每個樣本的損失函數,對 求偏導得到對應梯度,來更新 :

(3)隨機梯度下降是通過每個樣本來迭代更新一次,如果樣本量很大的情況(例如幾十萬),那麼可能只用其中幾萬條或者幾千條的樣本,就已經將

迭代到最優解了,對比上面的批量梯度下降,迭代一次需要用到十幾萬訓練樣本,一次迭代不可能最優,如果迭代10次的話就需要遍歷訓練樣本10次。但是,SGD伴隨的一個問題是噪音較BGD要多,使得SGD並不是每次迭代都向著整體最優化方向。

隨機梯度下降每次迭代只使用一個樣本,迭代一次計算量為n2,當樣本個數m很大的時候,隨機梯度下降迭代一次的速度要遠高於批量梯度下降方法。 兩者的關系可以這樣理解:隨機梯度下降方法以損失很小的一部分精確度和增加一定數量的迭代次數為代價,換取了總體的優化效率的提升。增加的迭代次數遠遠小於樣本的數量。

對批量梯度下降法和隨機梯度下降法的總結:

批量梯度下降---最小化所有訓練樣本的損失函數,使得最終求解的是全局的最優解,即求解的參數是使得風險函數最小,但是對於大規模樣本問題效率低下。

隨機梯度下降---最小化每條樣本的損失函數,雖然不是每次迭代得到的損失函數都向著全局最優方向, 但是大的整體的方向是向全局最優解的,最終的結果往往是在全局最優解附近,適用於大規模訓練樣本情況。

2. 牛頓法和擬牛頓法(Newton's method & Quasi-Newton Methods)

1)牛頓法(Newton's method)

牛頓法是一種在實數域和復數域上近似求解方程的方法。方法使用函數 f  ( x )的泰勒級數的前面幾項來尋找方程 f  ( x ) = 0的根。牛頓法最大的特點就在於它的收斂速度很快。

具體步驟:

首先,選擇一個接近函數 f  ( x )零點的x0,計算相應的 f  ( x 0)和切線斜率 f  '  ( x 0)(這里 f '  表示函數 f   的導數)。然後我們計算穿過點( x 0, f   ( x 0))並且斜率為 f  '( x 0)的直線和 x  軸的交點的 x 坐標,也就是求如下方程的解:

我們將新求得的點的 x  坐標命名為 x 1,通常 x 1會比 x 0更接近方程 f   ( x ) = 0的解。因此我們現在可以利用 x 1開始下一輪迭代。迭代公式可化簡為如下所示:

已經證明,如果 f   '是連續的,並且待求的零點 x 是孤立的,那麼在零點 x 周圍存在一個區域,只要初始值 x 0位於這個鄰近區域內,那麼牛頓法必定收斂。 並且,如果 f   ' ( x )不為0, 那麼牛頓法將具有平方收斂的性能. 粗略的說,這意味著每迭代一次,牛頓法結果的有效數字將增加一倍。下圖為一個牛頓法執行過程的例子。

由於牛頓法是基於當前位置的切線來確定下一次的位置,所以牛頓法又被很形象地稱為是"切線法"。

關於牛頓法和梯度下降法的效率對比:

從本質上去看,牛頓法是二階收斂,梯度下降是一階收斂,所以牛頓法就更快。如果更通俗地說的話,比如你想找一條最短的路徑走到一個盆地的最底部,梯度下降法每次只從你當前所處位置選一個坡度最大的方向走一步,牛頓法在選擇方向時,不僅會考慮坡度是否夠大,還會考慮你走了一步之後,坡度是否會變得更大。所以,可以說牛頓法比梯度下降法看得更遠一點,能更快地走到最底部。(牛頓法目光更加長遠,所以少走彎路;相對而言,梯度下降法只考慮了局部的最優,沒有全局思想。)

根據wiki上的解釋,從幾何上說,牛頓法就是用一個二次曲面去擬合你當前所處位置的局部曲面,而梯度下降法是用一個平面去擬合當前的局部曲面,通常情況下,二次曲面的擬合會比平面更好,所以牛頓法選擇的下降路徑會更符合真實的最優下降路徑。

註:紅色的牛頓法的迭代路徑,綠色的是梯度下降法的迭代路徑。

牛頓法的優缺點總結:

優點:二階收斂,收斂速度快;

缺點:牛頓法是一種迭代演算法,每一步都需要求解目標函數的Hessian矩陣的逆矩陣,計算比較復雜。

2)擬牛頓法(Quasi-Newton Methods)

擬牛頓法是求解非線性優化問題最有效的方法之一,於20世紀50年代由美國Argonne國家實驗室的物理學家W.C.Davidon所提出來。Davidon設計的這種演算法在當時看來是非線性優化領域最具創造性的發明之一。不久R. Fletcher和M. J. D. Powell證實了這種新的演算法遠比其他方法快速和可靠,使得非線性優化這門學科在一夜之間突飛猛進。

擬牛頓法的本質思想是改善牛頓法每次需要求解復雜的Hessian矩陣的逆矩陣的缺陷,它使用正定矩陣來近似Hessian矩陣的逆,從而簡化了運算的復雜度。 擬牛頓法和最速下降法一樣只要求每一步迭代時知道目標函數的梯度。通過測量梯度的變化,構造一個目標函數的模型使之足以產生超線性收斂性。這類方法大大優於最速下降法,尤其對於困難的問題。另外,因為擬牛頓法不需要二階導數的信息,所以有時比牛頓法更為有效。如今,優化軟體中包含了大量的擬牛頓演算法用來解決無約束,約束,和大規模的優化問題。

具體步驟:

擬牛頓法的基本思想如下。首先構造目標函數在當前迭代xk的二次模型:

這里Bk是一個對稱正定矩陣,於是我們取這個二次模型的最優解作為搜索方向,並且得到新的迭代點:

其中我們要求步長ak 滿足Wolfe條件。這樣的迭代與牛頓法類似,區別就在於用近似的Hesse矩陣Bk 代替真實的Hesse矩陣。所以擬牛頓法最關鍵的地方就是每一步迭代中矩陣Bk的更新。現在假設得到一個新的迭代xk+1,並得到一個新的二次模型:

我們盡可能地利用上一步的信息來選取Bk。具體地,我們要求

從而得到

這個公式被稱為割線方程。常用的擬牛頓法有DFP演算法和BFGS演算法。

原文鏈接: [Math] 常見的幾種最優化方法 - Poll的筆記 - 博客園

B. 施工中常用的最優化方法有哪些簡述其基本原理

施工時,在禪歲實際測量的工作中,為了提高施工放樣的效率和准確性,施工單賀螞睜位會利用測量儀器,來簡化放樣工作。

二、設備原理:

1.從BIM模型中設置現場控制點坐標和建築物結構點坐標分量作為BIM模型復合對比依據,在BIM模型中創建放樣控制點。

2.在已通過審批的機電BIM模型中,設置機電管線支吊架點位布置,並將所有的放樣點導入專業軟體。

3.進入現場,使用BIM放樣機器人對現場放樣控制點進行數據採集,即刻定位放樣機器人的現場坐標。

4.通過平板電腦選取BIM模型中所需放樣點,指揮機器人發射紅外激光自動照準現實點位,物枯實現「所見點即所得」,從而將BIM模型精確的反應到施工現場。

C. 編譯原理 代碼優化的方法有哪些

  1. 最直接有效的就是使用css+div的格式,將網頁中的樣式都放到css中,代碼直接調取相應的css文件

  2. 寫代碼的時候不需要的空格不要留,減小代碼所佔的空間

D. java代碼優化有哪些常用的方法

1、 盡量指定類的final修飾符 帶有final修飾符的類是不可派生的。
在Java核心API中,有許多應用final的例子,例如java.lang.String。為String類指定final防止了人們覆蓋length()方法。另外,如果指定一個類為final,則該類所有的方法都是final。Java編譯器會尋找機會內聯(inline)所有的final方法(這和具體的編譯器實現有關)。此舉能夠使性能平均提高50% 。
2、 盡量重用對象。
特別是String 對象的使用中,出現字元串連接情況時應用StringBuffer 代替。由於系統不僅要花時間生成對象,以後可能還需花時間對這些對象進行垃圾回收和處理。因此,生成過多的對象將會給程序的性能帶來很大的影響。
3、 盡量使用局部變數,調用方法時傳遞的參數以及在調用中創建的臨時變數都保存在棧(Stack)中,速度較快。
其他變數,如靜態變數、實例變數等,都在堆(Heap)中創建,速度較慢。另外,依賴於具體的編譯器/JVM,局部變數還可能得到進一步優化。請參見《盡可能使用堆棧變數》。
4、 不要重復初始化變數
默認情況下,調用類的構造函數時, Java會把變數初始化成確定的值:所有的對象被設置成null,整數變數(byte、short、int、long)設置成0,float和double變數設置成0.0,邏輯值設置成false。當一個類從另一個類派生時,這一點尤其應該注意,因為用new關鍵詞創建一個對象時,構造函數鏈中的所有構造函數都會被自動調用。
5、 在JAVA + ORACLE 的應用系統開發中,java中內嵌的SQL語句盡量使用大寫的形式,以減輕ORACLE解析器的解析負擔。
6、 Java 編程過程中,進行資料庫連接、I/O流操作時務必小心,在使用完畢後,即使關閉以釋放資源。
因為對這些大對象的操作會造成系統大的開銷,稍有不慎,會導致嚴重的後果。
7、 由於JVM的有其自身的GC機制,不需要程序開發者的過多考慮,從一定程度上減輕了開發者負擔,但同時也遺漏了隱患,過分的創建對象會消耗系統的大量內存,嚴重時會導致內存泄露,因此,保證過期對象的及時回收具有重要意義。
JVM回收垃圾的條件是:對象不在被引用;然而,JVM的GC並非十分的機智,即使對象滿足了垃圾回收的條件也不一定會被立即回收。所以,建議我們在對象使用完畢,應手動置成null。
8、 在使用同步機制時,應盡量使用方法同步代替代碼塊同步。
9、 盡量減少對變數的重復計算
例如:for(int i = 0;i < list.size; i ++) {

}
應替換為:
for(int i = 0,int len = list.size();i < len; i ++){

}
10、盡量採用lazy loading 的策略,即在需要的時候才開始創建。

例如: String str = 「aaa」;
if(i == 1) {
list.add(str);
}
應替換為:
if(i == 1) {
String str = 「aaa」;
list.add(str);
}

11、慎用異常

異常對性能不利。拋出異常首先要創建一個新的對象。Throwable介面的構造函數調用名為fillInStackTrace()的本地(Native)方法,fillInStackTrace()方法檢查堆棧,收集調用跟蹤信息。只要有異常被拋出,VM就必須調整調用堆棧,因為在處理過程中創建了一個新的對象。 異常只能用於錯誤處理,不應該用來控製程序流程。
12、不要在循環中使用:

Try {
} catch() {
}
應把其放置在最外層。
13、StringBuffer 的使用:

StringBuffer表示了可變的、可寫的字元串。
有三個構造方法 :
StringBuffer (); //默認分配16個字元的空間
StringBuffer (int size); //分配size個字元的空間
StringBuffer (String str); //分配16個字元+str.length()個字元空間
你可以通過StringBuffer的構造函數來設定它的初始化容量,這樣可以明顯地提升性能。
這里提到的構造函數是StringBuffer(int length),length參數表示當前的StringBuffer能保持的字元數量。你也可以使用ensureCapacity(int minimumcapacity)方法在StringBuffer對象創建之後設置它的容量。首先我們看看StringBuffer的預設行為,然後再找出一條更好的提升性能的途徑。
StringBuffer在內部維護一個字元數組,當你使用預設的構造函數來創建StringBuffer對象的時候,因為沒有設置初始化字元長度,StringBuffer的容量被初始化為16個字元,也就是說預設容量就是16個字元。當StringBuffer達到最大容量的時候,它會將自身容量增加到當前的2倍再加2,也就是(2*舊值+2)。如果你使用預設值,初始化之後接著往裡面追加字元,在你追加到第16個字元的時候它會將容量增加到34(2*16+2),當追加到34個字元的時候就會將容量增加到70(2*34+2)。無論何事只要StringBuffer到達它的最大容量它就不得不創建一個新的字元數組然後重新將舊字元和新字元都拷貝一遍――這也太昂貴了點。所以總是給StringBuffer設置一個合理的初始化容量值是錯不了的,這樣會帶來立竿見影的性能增益。StringBuffer初始化過程的調整的作用由此可見一斑。所以,使用一個合適的容量值來初始化StringBuffer永遠都是一個最佳的建議。
14、合理的使用Java類 java.util.Vector。

簡單地說,一個Vector就是一個java.lang.Object實例的數組。Vector與數組相似,它的元素可以通過整數形式的索引訪問。但是,Vector類型的對象在創建之後,對象的大小能夠根據元素的增加或者刪除而擴展、縮小。請考慮下面這個向Vector加入元素的例子:
Object bj = new Object();
Vector v = new Vector(100000);
for(int I=0;
I<100000; I++) { v.add(0,obj); }
除非有絕對充足的理由要求每次都把新元素插入到Vector的前面,否則上面的代碼對性能不利。在默認構造函數中,Vector的初始存儲能力是10個元素,如果新元素加入時存儲能力不足,則以後存儲能力每次加倍。Vector類就對象StringBuffer類一樣,每次擴展存儲能力時,所有現有的元素都要復制到新的存儲空間之中。下面的代碼片段要比前面的例子快幾個數量級:
Object bj = new Object();
Vector v = new Vector(100000);
for(int I=0; I<100000; I++) { v.add(obj); }
同樣的規則也適用於Vector類的remove()方法。由於Vector中各個元素之間不能含有「空隙」,刪除除最後一個元素之外的任意其他元素都導致被刪除元素之後的元素向前移動。也就是說,從Vector刪除最後一個元素要比刪除第一個元素「開銷」低好幾倍。
假設要從前面的Vector刪除所有元素,我們可以使用這種代碼:
for(int I=0; I<100000; I++)
{
v.remove(0);
}
但是,與下面的代碼相比,前面的代碼要慢幾個數量級:
for(int I=0; I<100000; I++)
{
v.remove(v.size()-1);
}
從Vector類型的對象v刪除所有元素的最好方法是:
v.removeAllElements();
假設Vector類型的對象v包含字元串「Hello」。考慮下面的代碼,它要從這個Vector中刪除「Hello」字元串:
String s = "Hello";
int i = v.indexOf(s);
if(I != -1) v.remove(s);
這些代碼看起來沒什麼錯誤,但它同樣對性能不利。在這段代碼中,indexOf()方法對v進行順序搜索尋找字元串「Hello」,remove(s)方法也要進行同樣的順序搜索。改進之後的版本是:
String s = "Hello";
int i = v.indexOf(s);
if(I != -1) v.remove(i);
這個版本中我們直接在remove()方法中給出待刪除元素的精確索引位置,從而避免了第二次搜索。一個更好的版本是:
String s = "Hello"; v.remove(s);
最後,我們再來看一個有關Vector類的代碼片段:
for(int I=0; I++;I < v.length)
如果v包含100,000個元素,這個代碼片段將調用v.size()方法100,000次。雖然size方法是一個簡單的方法,但它仍舊需要一次方法調用的開銷,至少JVM需要為它配置以及清除堆棧環境。在這里,for循環內部的代碼不會以任何方式修改Vector類型對象v的大小,因此上面的代碼最好改寫成下面這種形式:
int size = v.size(); for(int I=0; I++;I<size)
雖然這是一個簡單的改動,但它仍舊贏得了性能。畢竟,每一個CPU周期都是寶貴的。
15、當復制大量數據時,使用System.array()命令
int[] src={1,3,5,6,7,8};
int[] dest = new int[6];
System.array(src, 0, dest, 0, 6);
src:源數組; srcPos:源數組要復制的起始位置;
dest:目的數組; destPos:目的數組放置的起始位置;
length:復制的長度.
注意:src and dest都必須是同類型或者可以進行轉換類型的數組.
16、代碼重構:增強代碼的可讀性。
public class ShopCart {
private List carts ;

public void add (Object item) {
if(carts == null) {
carts = new ArrayList();
}
crts.add(item);
}
public void remove(Object item) {
if(carts. contains(item)) {
carts.remove(item);
}
}
public List getCarts() {
//返回只讀列表
return Collections.unmodifiableList(carts);
}

//不推薦這種方式
//this.getCarts().add(item);
}
17、不用new關鍵詞創建類的實例

用new關鍵詞創建類的實例時,構造函數鏈中的所有構造函數都會被自動調用。但如果一個對象實現了Cloneable介面,我們可以調用它的clone()方法。clone()方法不會調用任何類構造函數。
在使用設計模式(Design Pattern)的場合,如果用Factory模式創建對象,則改用clone()方法創建新的對象實例非常簡單。例如,下面是Factory模式的一個典型實現:
public static Credit getNewCredit() {
return new Credit();
}
改進後的代碼使用clone()方法,如下所示:
private static Credit BaseCredit = new Credit();
public static Credit getNewCredit() {
return (Credit) BaseCredit.clone();
}
上面的思路對於數組處理同樣很有用。
18、乘法和除法

考慮下面的代碼:
for (val = 0; val < 100000; val +=5) {
alterX = val * 8; myResult = val * 2;
}
用移位操作替代乘法操作可以極大地提高性能。下面是修改後的代碼:
for (val = 0; val < 100000; val += 5) {
alterX = val << 3; myResult = val << 1;
}
修改後的代碼不再做乘以8的操作,而是改用等價的左移3位操作,每左移1位相當於乘以2。相應地,右移1位操作相當於除以2。值得一提的是,雖然移位操作速度快,但可能使代碼比較難於理解,所以最好加上一些注釋。
19、在JSP頁面中關閉無用的會話。

一個常見的誤解是以為session在有客戶端訪問時就被創建,然而事實是直到某server端程序調用HttpServletRequest.getSession(true)這樣的語句時才被創建,注意如果JSP沒有顯示的使用 <> 關閉session,則JSP文件在編譯成Servlet時將會自動加上這樣一條語句HttpSession session = HttpServletRequest.getSession(true);這也是JSP中隱含的session對象的來歷。由於session會消耗內存資源,因此,如果不打算使用session,應該在所有的JSP中關閉它。
對於那些無需跟蹤會話狀態的頁面,關閉自動創建的會話可以節省一些資源。使用如下page指令:<%@ page session="false"%>
20、JDBC與I/O

如果應用程序需要訪問一個規模很大的數據集,則應當考慮使用塊提取方式。默認情況下,JDBC每次提取32行數據。舉例來說,假設我們要遍歷一個5000行的記錄集,JDBC必須調用資料庫157次才能提取到全部數據。如果把塊大小改成512,則調用資料庫的次數將減少到10次。
21、Servlet與內存使用
許多開發者隨意地把大量信息保存到用戶會話之中。一些時候,保存在會話中的對象沒有及時地被垃圾回收機制回收。從性能上看,典型的症狀是用戶感到系統周期性地變慢,卻又不能把原因歸於任何一個具體的組件。如果監視JVM的堆空間,它的表現是內存佔用不正常地大起大落。
解決這類內存問題主要有二種辦法。第一種辦法是,在所有作用范圍為會話的Bean中實現HttpSessionBindingListener介面。這樣,只要實現valueUnbound()方法,就可以顯式地釋放Bean使用的資源。
另外一種辦法就是盡快地把會話作廢。大多數應用伺服器都有設置會話作廢間隔時間的選項。另外,也可以用編程的方式調用會話的setMaxInactiveInterval()方法,該方法用來設定在作廢會話之前,Servlet容器允許的客戶請求的最大間隔時間,以秒計。
22、使用緩沖標記

一些應用伺服器加入了面向JSP的緩沖標記功能。例如,BEA的WebLogic Server從6.0版本開始支持這個功能,Open Symphony工程也同樣支持這個功能。JSP緩沖標記既能夠緩沖頁面片斷,也能夠緩沖整個頁面。當JSP頁面執行時,如果目標片斷已經在緩沖之中,則生成該片斷的代碼就不用再執行。頁面級緩沖捕獲對指定URL的請求,並緩沖整個結果頁面。對於購物籃、目錄以及門戶網站的主頁來說,這個功能極其有用。對於這類應用,頁面級緩沖能夠保存頁面執行的結果,供後繼請求使用。
23、選擇合適的引用機制

在典型的JSP應用系統中,頁頭、頁腳部分往往被抽取出來,然後根據需要引入頁頭、頁腳。當前,在JSP頁面中引入外部資源的方法主要有兩種:include指令,以及include動作。
include指令:例如<%@ include file="right.html" %>。該指令在編譯時引入指定的資源。在編譯之前,帶有include指令的頁面和指定的資源被合並成一個文件。被引用的外部資源在編譯時就確定,比運行時才確定資源更高效。
include動作:例如<jsp:include page="right.jsp" />。該動作引入指定頁面執行後生成的結果。由於它在運行時完成,因此對輸出結果的控制更加靈活。但時,只有當被引用的內容頻繁地改變時,或者在對主頁面的請求沒有出現之前,被引用的頁面無法確定時,使用include動作才合算。
24、及時清除不再需要的會話

為了清除不再活動的會話,許多應用伺服器都有默認的會話超時時間,一般為30分鍾。當應用伺服器需要保存更多會話時,如果內存容量不足,操作系統會把部分內存數據轉移到磁碟,應用伺服器也可能根據「最近最頻繁使用」(Most Recently Used)演算法把部分不活躍的會話轉儲到磁碟,甚至可能拋出「內存不足」異常。在大規模系統中,串列化會話的代價是很昂貴的。當會話不再需要時,應當及時調用HttpSession.invalidate()方法清除會話。HttpSession.invalidate()方法通常可以在應用的退出頁面調用。
25、不要將數組聲明為:public static final 。
26、HashMap的遍歷效率討論

經常遇到對HashMap中的key和value值對的遍歷操作,有如下兩種方法:
Map<String, String[]> paraMap = new HashMap<String, String[]>();
//第一個循環
Set<String> appFieldDefIds = paraMap.keySet();
for (String appFieldDefId : appFieldDefIds) {
String[] values = paraMap.get(appFieldDefId);
......
}

//第二個循環
for(Entry<String, String[]> entry : paraMap.entrySet()){
String appFieldDefId = entry.getKey();
String[] values = entry.getValue();
.......
}
第一種實現明顯的效率不如第二種實現。
分析如下 Set<String> appFieldDefIds = paraMap.keySet(); 是先從HashMap中取得keySet
代碼如下:
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}

private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}
其實就是返回一個私有類KeySet, 它是從AbstractSet繼承而來,實現了Set介面。
再來看看for/in循環的語法
for(declaration : expression)
statement
在執行階段被翻譯成如下各式
for(Iterator<E> #i = (expression).iterator(); #i.hashNext();){
declaration = #i.next();
statement
}
因此在第一個for語句for (String appFieldDefId : appFieldDefIds) 中調用了HashMap.keySet().iterator()
而這個方法調用了newKeyIterator()
Iterator<K> newKeyIterator() {
return new KeyIterator();
}
private class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
所以在for中還是調用了
在第二個循環for(Entry<String, String[]> entry : paraMap.entrySet())中使用的Iterator是如下的一個內部

private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}
此時第一個循環得到key,第二個循環得到HashMap的Entry效率就是從循環裡面體現出來的第二個循環此致可以直接取key和value值而第一個循環還是得再利用HashMap的get(Object key)來取value值現在看看HashMap的get(Object key)方法
public V get(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length); //Entry[] table
Entry<K,V> e = table;
while (true) {
if (e == null)
return null;
if (e.hash == hash && eq(k, e.key))
return e.value;
e = e.next;
}
}
其實就是再次利用Hash值取出相應的Entry做比較得到結果,所以使用第一中循環相當於兩次進入HashMap的Entry
中而第二個循環取得Entry的值之後直接取key和value,效率比第一個循環高。其實按照Map的概念來看也應該是用第二個循環好一點,它本來就是key和value的值對,將key和value分開操作在這里不是個好選擇。
27、array(數組) 和 ArryList的使用

array([]):最高效;但是其容量固定且無法動態改變;
ArrayList:容量可動態增長;但犧牲效率;
基於效率和類型檢驗,應盡可能使用array,無法確定數組大小時才使用ArrayList!
ArrayList是Array的復雜版本
ArrayList內部封裝了一個Object類型的數組,從一般的意義來說,它和數組沒有本質的差別,甚至於ArrayList的許多方法,如Index、IndexOf、Contains、Sort等都是在內部數組的基礎上直接調用Array的對應方法。
ArrayList存入對象時,拋棄類型信息,所有對象屏蔽為Object,編譯時不檢查類型,但是運行時會報錯。
註:jdk5中加入了對泛型的支持,已經可以在使用ArrayList時進行類型檢查。
從這一點上看來,ArrayList與數組的區別主要就是由於動態增容的效率問題了
28、盡量使用HashMap 和ArrayList ,除非必要,否則不推薦使用HashTable和Vector ,後者由於使用同步機制,而導致了性能的開銷。
29、StringBuffer 和StringBuilder的區別:

java.lang.StringBuffer線程安全的可變字元序列。一個類似於 String 的字元串緩沖區,但不能修改。
StringBuilder。與該類相比,通常應該優先使用 java.lang.StringBuilder類,因為它支持所有相同的操作,但由於它不執行同步,所以速度更快。為了獲得更好的性能,在構造 StirngBuffer 或 StirngBuilder 時應盡可能指定它的容量。當然,如果你操作的字元串長度不超過 16 個字元就不用了。 相同情況下使用 StirngBuilder 相比使用 StringBuffer 僅能獲得 10%-15% 左右的性能提升,但卻要冒多線程不安全的風險。而在現實的模塊化編程中,負責某一模塊的程序員不一定能清晰地判斷該模塊是否會放入多線程的環境中運行,因此:除非你能確定你的系統的瓶頸是在 StringBuffer 上,並且確定你的模塊不會運行在多線程模式下,否則還是用 StringBuffer 吧。
30、盡量避免使用split
除非是必須的,否則應該避免使用split,split由於支持正則表達式,所以效率比較低,如果是頻繁的幾十,幾百萬的調用將會耗費大量資源,如果確實需要頻繁的調用split,可以考慮使用apache的 StringUtils.split(string,char),頻繁split的可以緩存結果。
其他補充:
1、及時清除不再使用的對象,設為null
2、盡可能使用final,static等關鍵字
3、盡可能使用buffered對象
如何優化代碼使JAVA源文件及編譯後CLASS文件更小
1 盡量使用繼承,繼承的方法越多,你要寫的代碼量也就越少
2 打開JAVA編譯器的優化選項: javac -O 這個選項將刪除掉CLASS文件中的行號,並能把
一些private, static,final的小段方法申明為inline方法調用
3 把公用的代碼提取出來
4 不要初始化很大的數組,盡管初始化一個數組在JAVA代碼中只是一行的代碼量,但
編譯後的代碼是一行代碼插入一個數組的元素,所以如果你有大量的數據需要存在數組
中的話,可以先把這些數據放在String中,然後在運行期把字元串解析到數組中
5 日期類型的對象會佔用很大的空間,如果你要存儲大量的日期對象,可以考慮把它存儲為
long型,然後在使用的時候轉換為Date類型
6 類名,方法名和變數名盡量使用簡短的名字,可以考慮使用Hashjava, Jobe, Obfuscate and Jshrink等工具自動完成這個工作
7 將static final類型的變數定義到Interface中去
8 算術運算 能用左移/右移的運算就不要用*和/運算,相同的運算不要運算多次
2. 不要兩次初始化變數
Java通過調用獨特的類構造器默認地初始化變數為一個已知的值。所有的對象被設置成null,integers (byte, short, int, long)被設置成0,float和double設置成0.0,Boolean變數設置成false。這對那些擴展自其它類的類尤其重要,這跟使用一個新的關鍵詞創建一個對象時所有一連串的構造器被自動調用一樣。
3. 在任何可能的地方讓類為Final
標記為final的類不能被擴展。在《核心Java API》中有大量這個技術的例子,諸如java.lang.String。將String類標記為final阻止了開發者創建他們自己實現的長度方法。
更深入點說,如果類是final的,所有類的方法也是final的。Java編譯器可能會內聯所有的方法(這依賴於編譯器的實現)。在我的測試里,我已經看到性能平均增加了50%。
9. 異常在需要拋出的地方拋出,try catch能整合就整合
try {
some.method1(); // Difficult for javac
} catch( method1Exception e ) { // and the JVM runtime
// Handle exception 1 // to optimize this
} // code
try {
some.method2();
} catch( method2Exception e ) {
// Handle exception 2
}

try {
some.method3();
} catch( method3Exception e ) {
// Handle exception 3
}
已下代碼 更容易被編譯器優化
try {
some.method1(); // Easier to optimize
some.method2();
some.method3();
} catch( method1Exception e ) {
// Handle exception 1
} catch( method2Exception e ) {
// Handle exception 2
} catch( method3Exception e ) {
// Handle exception 3
}
10. For循環的優化
Replace…
for( int i = 0; i < collection.size(); i++ ) {
...
}
with…
for( int i = 0, n = collection.size(); i < n; i++ ) {
...
}

5、 在JAVA + ORACLE 的應用系統開發中,java中內嵌的SQL語句盡量使用大寫的形式,以減輕ORACLE解析器的解析負擔。
10、盡量採用lazy loading 的策略,即在需要的時候才開始創建。
例如: String str = 「aaa」;
if(i == 1) {
list.add(str);
}
應替換為:
if(i == 1) {
String str = 「aaa」;
list.add(str);
}
12、不要在循環中使用:
Try {
} catch() {
}
應把其放置在最外層

E. 常見的優化方法有哪些

1.0.618法(黃金分割法) 2.插值法 3.坐標行擾孝輪換法 4.梯度法 5.共軛方向法李凳 6.復合形法 7.懲罰函數法檔稿

F. 演算法優化有哪些主要方法和作用

優化演算法有很多,關鍵是針對不同的優化問題,例如可行解變數的取值(連續還是離散)、目標函數和約束條件的復雜程度(線性還是非線性)等,應用不同的演算法。
對於連續和線性等較簡單的問題,可以選擇一些經典演算法,如梯度、Hessian
矩陣、拉格朗日乘數、單純形法、梯度下降法等。
而對於更復雜的問題,則可考慮用一些智能優化演算法,如遺傳演算法和蟻群演算法,此外還包括模擬退火、禁忌搜索、粒子群演算法等。

G. 編譯原理

C語言編譯過程詳解
C語言的編譯鏈接過程是要把我們編寫的一個C程序(源代碼)轉換成可以在硬體上運行的程序(可執行代碼),需要進行編譯和鏈接。編譯就是把文本形式源代碼翻譯為機器語言形式的目標文件的過程。鏈接是把目標文件、操作系統的啟動代碼和用到的庫文件進行組織形成最終生成可執行代碼的過程。過程圖解如下:

從圖上可以看到,整個代碼的編譯過程分為編譯和鏈接兩個過程,編譯對應圖中的大括弧括起的部分,其餘則為鏈接過程。
一、編譯過程
編譯過程又可以分成兩個階段:編譯和匯編。
1、編譯
編譯是讀取源程序(字元流),對之進行詞法和語法的分析,將高級語言指令轉換為功能等效的匯編代碼,源文件的編譯過程包含兩個主要階段:
第一個階段是預處理階段,在正式的編譯階段之前進行。預處理階段將根據已放置在文件中的預處理指令來修改源文件的內容。如#include指令就是一個預處理指令,它把頭文件的內容添加到.cpp文件中。這個在編譯之前修改源文件的方式提供了很大的靈活性,以適應不同的計算機和操作系統環境的限制。一個環境需要的代碼跟另一個環境所需的代碼可能有所不同,因為可用的硬體或操作系統是不同的。在許多情況下,可以把用於不同環境的代碼放在同一個文件中,再在預處理階段修改代碼,使之適應當前的環境。
主要是以下幾方面的處理:
(1)宏定義指令,如 #define a b。
對於這種偽指令,預編譯所要做的是將程序中的所有a用b替換,但作為字元串常量的 a則不被替換。還有 #undef,則將取消對某個宏的定義,使以後該串的出現不再被替換。
(2)條件編譯指令,如#ifdef,#ifndef,#else,#elif,#endif等。
這些偽指令的引入使得程序員可以通過定義不同的宏來決定編譯程序對哪些代碼進行處理。預編譯程序將根據有關的文件,將那些不必要的代碼過濾掉
(3) 頭文件包含指令,如#include "FileName"或者#include <FileName>等。
在頭文件中一般用偽指令#define定義了大量的宏(最常見的是字元常量),同時包含有各種外部符號的聲明。採用頭文件的目的主要是為了使某些定義可以供多個不同的C源程序使用。因為在需要用到這些定義的C源程序中,只需加上一條#include語句即可,而不必再在此文件中將這些定義重復一遍。預編譯程序將把頭文件中的定義統統都加入到它所產生的輸出文件中,以供編譯程序對之進行處理。包含到C源程序中的頭文件可以是系統提供的,這些頭文件一般被放在/usr/include目錄下。在程序中#include它們要使用尖括弧(<>)。另外開發人員也可以定義自己的頭文件,這些文件一般與C源程序放在同一目錄下,此時在#include中要用雙引號("")。
(4)特殊符號,預編譯程序可以識別一些特殊的符號。
例如在源程序中出現的LINE標識將被解釋為當前行號(十進制數),FILE則被解釋為當前被編譯的C源程序的名稱。預編譯程序對於在源程序中出現的這些串將用合適的值進行替換。
預編譯程序所完成的基本上是對源程序的「替代」工作。經過此種替代,生成一個沒有宏定義、沒有條件編譯指令、沒有特殊符號的輸出文件。這個文件的含義同沒有經過預處理的源文件是相同的,但內容有所不同。下一步,此輸出文件將作為編譯程序的輸出而被翻譯成為機器指令。
第二個階段編譯、優化階段。經過預編譯得到的輸出文件中,只有常量;如數字、字元串、變數的定義,以及C語言的關鍵字,如main,if,else,for,while,{,}, +,-,*,\等等。
編譯程序所要作得工作就是通過詞法分析和語法分析,在確認所有的指令都符合語法規則之後,將其翻譯成等價的中間代碼表示或匯編代碼。
優化處理是編譯系統中一項比較艱深的技術。它涉及到的問題不僅同編譯技術本身有關,而且同機器的硬體環境也有很大的關系。優化一部分是對中間代碼的優化。這種優化不依賴於具體的計算機。另一種優化則主要針對目標代碼的生成而進行的。
對於前一種優化,主要的工作是刪除公共表達式、循環優化(代碼外提、強度削弱、變換循環控制條件、已知量的合並等)、復寫傳播,以及無用賦值的刪除,等等。
後一種類型的優化同機器的硬體結構密切相關,最主要的是考慮是如何充分利用機器的各個硬體寄存器存放的有關變數的值,以減少對於內存的訪問次數。另外,如何根據機器硬體執行指令的特點(如流水線、RISC、CISC、VLIW等)而對指令進行一些調整使目標代碼比較短,執行的效率比較高,也是一個重要的研究課題。
2、匯編
匯編實際上指把匯編語言代碼翻譯成目標機器指令的過程。對於被翻譯系統處理的每一個C語言源程序,都將最終經過這一處理而得到相應的目標文件。目標文件中所存放的也就是與源程序等效的目標的機器語言代碼。目標文件由段組成。通常一個目標文件中至少有兩個段:
代碼段:該段中所包含的主要是程序的指令。該段一般是可讀和可執行的,但一般卻不可寫。
數據段:主要存放程序中要用到的各種全局變數或靜態的數據。一般數據段都是可讀,可寫,可執行的。
UNIX環境下主要有三種類型的目標文件:
(1)可重定位文件
其中包含有適合於其它目標文件鏈接來創建一個可執行的或者共享的目標文件的代碼和數據。
(2)共享的目標文件
這種文件存放了適合於在兩種上下文里鏈接的代碼和數據。
第一種是鏈接程序可把它與其它可重定位文件及共享的目標文件一起處理來創建另一個 目標文件;
第二種是動態鏈接程序將它與另一個可執行文件及其它的共享目標文件結合到一起,創建一個進程映象。
(3)可執行文件
它包含了一個可以被操作系統創建一個進程來執行之的文件。匯編程序生成的實際上是第一種類型的目標文件。對於後兩種還需要其他的一些處理方能得到,這個就是鏈接程序的工作了。
二、鏈接過程
由匯編程序生成的目標文件並不能立即就被執行,其中可能還有許多沒有解決的問題。
例如,某個源文件中的函數可能引用了另一個源文件中定義的某個符號(如變數或者函數調用等);在程序中可能調用了某個庫文件中的函數,等等。所有的這些問題,都需要經鏈接程序的處理方能得以解決。
鏈接程序的主要工作就是將有關的目標文件彼此相連接,也即將在一個文件中引用的符號同該符號在另外一個文件中的定義連接起來,使得所有的這些目標文件成為一個能夠被操作系統裝入執行的統一整體。
根據開發人員指定的同庫函數的鏈接方式的不同,鏈接處理可分為兩種:
(1)靜態鏈接
在這種鏈接方式下,函數的代碼將從其所在地靜態鏈接庫中被拷貝到最終的可執行程序中。這樣該程序在被執行時這些代碼將被裝入到該進程的虛擬地址空間中。靜態鏈接庫實際上是一個目標文件的集合,其中的每個文件含有庫中的一個或者一組相關函數的代碼。
(2) 動態鏈接
在此種方式下,函數的代碼被放到稱作是動態鏈接庫或共享對象的某個目標文件中。鏈接程序此時所作的只是在最終的可執行程序中記錄下共享對象的名字以及其它少量的登記信息。在此可執行文件被執行時,動態鏈接庫的全部內容將被映射到運行時相應進程的虛地址空間。動態鏈接程序將根據可執行程序中記錄的信息找到相應的函數代碼。
對於可執行文件中的函數調用,可分別採用動態鏈接或靜態鏈接的方法。使用動態鏈接能夠使最終的可執行文件比較短小,並且當共享對象被多個進程使用時能節約一些內存,因為在內存中只需要保存一份此共享對象的代碼。但並不是使用動態鏈接就一定比使用靜態鏈接要優越。在某些情況下動態鏈接可能帶來一些性能上損害。
我們在linux使用的gcc編譯器便是把以上的幾個過程進行捆綁,使用戶只使用一次命令就把編譯工作完成,這的確方便了編譯工作,但對於初學者了解編譯過程就很不利了,下圖便是gcc代理的編譯過程:

從上圖可以看到:
預編譯
將.c 文件轉化成 .i文件
使用的gcc命令是:gcc –E
對應於預處理命令cpp
編譯
將.c/.h文件轉換成.s文件
使用的gcc命令是:gcc –S
對應於編譯命令 cc –S
匯編
將.s 文件轉化成 .o文件
使用的gcc 命令是:gcc –c
對應於匯編命令是 as
鏈接
將.o文件轉化成可執行程序
使用的gcc 命令是: gcc
對應於鏈接命令是 ld
總結起來編譯過程就上面的四個過程:預編譯、編譯、匯編、鏈接。了解這四個過程中所做的工作,對我們理解頭文件、庫等的工作過程是有幫助的,而且清楚的了解編譯鏈接過程還對我們在編程時定位錯誤,以及編程時盡量調動編譯器的檢測錯誤會有很大的幫助的。
是否可以解決您的問題?

H. 流程優化四種基本方法

流程優化基本方法:標桿瞄準法、DMAIC模型、ESIA分析法、ECRS分析法、SDCA循環。

流程優化的實施內容:

1、總體規劃:首先要得到管理層的支持與委託,虛升設定基本方向。要明確企業戰略目標、內部需求和IT建設,確定流程優化目標和范圍、項目組成員、項目預算和計劃。

2、優化項目啟動:召開項目啟動大會,進行全員動員,宣傳造勢,並進行內部流程優化理念培訓。

3、流程描述及診斷分析:通過企業內外部環境分析及客戶滿意度調查,了解流程現狀,描述與分析現有流程,通過問題歸集,得出診斷報告。

4、流程優化設計:建立目標,確認關鍵流程,明確改進方向及流程優化設計,配套輔助信息初步形成,確定優化方案。

5、配套方案設計:配套輔助信息的收集與整理,職能方案調整,配套方案設計。

6、實施:制訂詳細的優化工作計劃,組織實施,並完善配套方案。

7、項姿殲目評測:項目效果評估,總結成功跡譽沖得失經驗,指導完善流程管理。

8、持續改進:觀察流程運作狀態,與預定優化目標比較分析,對不足之處進行修正改善,並使流程優化成為一種持續行為。

I. 編譯原理優化遵循哪些原則

真好奇的話,可以去翻翻《編譯原理》。不然,咱們只需要知道:1、優化有執行速度優化和空間優化兩種;2、優化級別越高,對代碼編寫質量的要求越高。如恰當地應用遞歸,使用volatile關鍵字等等,所以現實工程中一般不會開到最高優化級;3、想不出來了。。

閱讀全文

與基本的優化方法有哪幾種編譯原理相關的資料

熱點內容
寧波程序員接私活小程序 瀏覽:491
小六壬pdf 瀏覽:13
怎麼通過快捷指令隱藏手機app 瀏覽:609
方舟手游如何辨別優質伺服器 瀏覽:116
pdf林徽因傳 瀏覽:527
國產區小電影網址 瀏覽:102
西班牙大尺度男男 瀏覽:609
消先的眼角膜電影 瀏覽:434
編譯原理課設項目簡介 瀏覽:921
日本《失樂園》無刪減 瀏覽:227
更新最快的電視劇網站 瀏覽:597
啟動app的廣告怎麼關 瀏覽:850
非sp文中的sp情節的小說 瀏覽:76
女主是被拐賣到大山的小說 瀏覽:858
哆啦a夢美人魚電影 瀏覽:597
舊版本蝌蚪短視頻app怎麼不能 瀏覽:458
電影劇情里有個老頭在雨里騎單車有防 瀏覽:950
日本歐美推理片電影 瀏覽:75
主角穿越到紅軍長征 瀏覽:915
《屍吻》拿走不謝 瀏覽:306