『壹』 幾種經典演算法回顧
今天無意中從箱子里發現了大學時學演算法的教材《演算法設計與分析》,雖然工作這么幾年沒在什麼地方用過演算法,但演算法的思想還是影響深刻的,可以在系統設計時提供一些思路。大致翻了翻,重溫了一下幾種經典的演算法,做一下小結。
分治法是一種基本演算法設計技術。其基本思想是將一個問題分解為多個規模較小的子問題,這些子問題互相獨立並與原問題解決方法相同。遞歸解這些子問題,然後將這些子問題的解合並得到原問題的解。分治法適用於該問題的規模縮小到一定的程度就可以容易地解決,該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質,且該問題所分解出的各個子問題是相互獨立的。
動態規劃也是一種基本演算法設計技術。其基本思想是將待求解問題分解成若干個子問題,但是經分解得到的子問題往往不是互相獨立的,如果能夠保存已解決的子問題的答案,而在需要時再找出已求得的答案,就可以避免大量重復計算。動態規劃適用於最優子結構,在遞歸計算中,許多子問題被重復計算多次。
貪心演算法總是作出在當前看來最好的選擇。也就是說貪心演算法並不從整體最優考慮,它所作出的選擇只是在某種意義上的局部最優選擇。貪心演算法適用於具有貪心選擇性質和最優子結構性質的問題。步驟包括不斷尋找局部最優解。
回溯法是一種系統地搜索問題解的方法。在問題的解空間樹中,按深度優先策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任意一點時,先判斷該結點是否包含問題的解。如果肯定不包含,則跳過對該結點為根的子樹的搜索,逐層向其祖先結點回溯;否則,進入該子樹,繼續按深度優先策略搜索。
分支限界法是一種系統地搜索問題解的方法。分支限界法常以廣度優先或以最小耗費(最大效益)優先的方式搜索問題的解空間樹。在分支限界法中,每一個活結點只有一次機會成為擴展結點。活結點一旦成為擴展結點,就一次性產生其所有兒子結點。在這些兒子結點中,導致不可行解或導致非最優解的兒子結點被舍棄,其餘兒子結點被加入活結點表中。此後,從活結點表中取下一結點成為當前擴展結點,並重復上述結點擴展過程。這個過程一直持續到找到所需的解或活結點表為空時為止。
這些演算法在實際問題中有著廣泛的應用。例如,分治法的核心演算法MapRece在Google的核心演算法中就有應用。動態規劃可以應用於找硬幣、哈夫曼編碼、單源最短路徑、最小生成樹等問題。貪心演算法可以應用於單源最短路徑問題,分支限界法則可以應用於N皇後問題。
在有向圖G中,每一邊都有一個非負邊權。這個問題可以通過多種演算法來解決,包括但不限於最短路徑演算法、最小生成樹演算法等。這些演算法的具體實現和優化方法,是演算法設計與分析中的重要內容。
『貳』 經典優化演算法之分治法(Divide-and-Conquer Algorithm)
經典優化演算法中的分治法,即Divide-and-Conquer策略,是一種強大的問題解決技巧,通過將復雜問題分解為更小的、相似的子問題,再逐個解決並合並結果。它在眾多高效演算法中占據核心地位,如排序(如快速排序和歸並排序)和信號處理(如快速傅立葉變換)。
舉個通俗的例子,尋找100枚硬幣中重量不同的假幣,傳統方法可能需要多次比較,而分治法通過不斷分割問題(100→33+33+34),每次縮小規模,最終只需5次就能找出假幣。這種策略的流程可分解為:劃分、遞歸求解子問題和合並子問題的解。
分治法的運作遵循一個通用模式:在n規模的問題上,先遞歸地解決規模為n/b的子問題,再合並子問題的解。通過時間復雜度公式,如歸並排序,我們能看到其在解決規模問題上的效率。分治法適用於問題規模縮小後易於處理,且子問題獨立且無重疊的場景。
例如,歸並排序是分治法的經典應用,其將排序問題分解為多個子問題,通過遞歸解決並合並結果。在漢諾塔問題中,通過分治法,將大問題分解為小規模的子問題,再逐層遞歸解決,最終找到最優解。
總之,分治法是一種遞歸解決問題的方法,關鍵在於找到問題的最小規模解決方案,並構建遞歸函數處理不同規模的問題。如果你對文章內容有任何疑問,可以聯系秦虎老師或相關團隊成員進行交流。
『叄』 分治演算法——漢諾塔問題
一、分治演算法概念
「分而治之」,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題,直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。
這個技巧是很多高效演算法的基礎,如排序演算法(快速排序,歸並排序),傅立葉變換(快速傅立葉變換) 。
任何一個可以用計算機求解的問題所需的計算時間都與其規模有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算。n=2時,只要作一次比較即可排好序。n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
二、分治法的設計思想
將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
三、分治策略
對於一個規模為n的問題,若該問題可以容易地解決(比如說規模n較小)則直接解決,否則將其分解為k個規模較小的子問題,這些子問題互相獨立且與原問題形式相同,遞歸地解這些子問題,然後將各子問題的解合並得到原問題的解。這種演算法設計策略叫做分治法。
四、分治法實現步驟
①分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;②解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;③合並:將各個子問題的解合並為原問題的解。
它的一般的演算法設計模式如下: Divide-and-Conquer(P) 1. if |P|≤n0 2. then return(ADHOC(P)) 3. 將P分解為較小的子問題 P1 ,P2 ,…,Pk 4. for i←1 to k 5. do yi ← Divide-and-Conquer(Pi) 遞歸解決Pi 6. T ← MERGE(y1,y2,…,yk) 合並子問題 7. return(T)
五、可使用分治法求解的一些經典問題 (1)二分搜索
(2)大整數乘法
(3)Strassen矩陣乘法
(4)棋盤覆蓋
(5)合並排序
(6)快速排序
(7)線性時間選擇
(8)最接近點對問題
(9)循環賽日程表
(10)漢諾塔
『肆』 程序員都應該精通的六種演算法,你會了嗎
對於一名優秀的程序員來說,面對一個項目的需求的時候,一定會在腦海里浮現出最適合解決這個問題的方法是什麼,選對了演算法,就會起到事半功倍的效果,反之,則可能會使程序運行效率低下,還容易出bug。因此,熟悉掌握常用的演算法,是對於一個優秀程序員最基本的要求。
那麼,常用的演算法都有哪些呢?一般來講,在我們日常工作中涉及到的演算法,通常分為以下幾個類型:分治、貪心、迭代、枚舉、回溯、動態規劃。下面我們來一一介紹這幾種演算法。
一、分治演算法
分治演算法,顧名思義,是將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
分治演算法一般分為三個部分:分解問題、解決問題、合並解。
分治演算法適用於那些問題的規模縮小到一定程度就可以解決、並且各子問題之間相互獨立,求出來的解可以合並為該問題的解的情況。
典型例子比如求解一個無序數組中的最大值,即可以採用分治演算法,示例如下:
def pidAndConquer(arr,leftIndex,rightIndex):
if(rightIndex==leftIndex+1 || rightIndex==leftIndex){
return Math.max(arr[leftIndex],arr[rightIndex]);
}
int mid=(leftIndex+rightIndex)/2;
int leftMax=pidAndConquer(arr,leftIndex,mid);
int rightMax=pidAndConquer(arr,mid,rightIndex);
return Math.max(leftMax,rightMax);
二、貪心演算法
貪心演算法是指在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。
貪心演算法的基本思路是把問題分成若干個子問題,然後對每個子問題求解,得到子問題的局部最優解,最後再把子問題的最優解合並成原問題的一個解。這里要注意一點就是貪心演算法得到的不一定是全局最優解。這一缺陷導致了貪心演算法的適用范圍較少,更大的用途在於平衡演算法效率和最終結果應用,類似於:反正就走這么多步,肯定給你一個值,至於是不是最優的,那我就管不了了。就好像去菜市場買幾樣菜,可以經過反復比價之後再買,或者是看到有賣的不管三七二十一先買了,總之最終結果是菜能買回來,但搞不好多花了幾塊錢。
典型例子比如部分背包問題:有n個物體,第i個物體的重量為Wi,價值為Vi,在總重量不超過C的情況下讓總價值盡量高。每一個物體可以只取走一部分,價值和重量按比例計算。
貪心策略就是,每次都先拿性價比高的,判斷不超過C。
三、迭代演算法
迭代法也稱輾轉法,是一種不斷用變數的舊值遞推新值的過程。迭代演算法是用計算機解決問題的一種基本方法,它利用計算機運算速度快、適合做重復性操作的特點,讓計算機對一組指令(或一定步驟)進行重復執行,在每次執行這組指令(或這些步驟)時,都從變數的原值推出它的一個新值。最終得到問題的結果。
迭代演算法適用於那些每步輸入參數變數一定,前值可以作為下一步輸入參數的問題。
典型例子比如說,用迭代演算法計算斐波那契數列。
四、枚舉演算法
枚舉演算法是我們在日常中使用到的最多的一個演算法,它的核心思想就是:枚舉所有的可能。枚舉法的本質就是從所有候選答案中去搜索正確地解。
枚舉演算法適用於候選答案數量一定的情況。
典型例子包括雞錢問題,有公雞5,母雞3,三小雞1,求m錢n雞的所有可能解。可以採用一個三重循環將所有情況枚舉出來。代碼如下:
五、回溯演算法
回溯演算法是一個類似枚舉的搜索嘗試過程,主要是在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。
許多復雜的,規模較大的問題都可以使用回溯法,有「通用解題方法」的美稱。
典型例子是8皇後演算法。在8 8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問一共有多少種擺法。
回溯法是求解皇後問題最經典的方法。演算法的思想在於如果一個皇後選定了位置,那麼下一個皇後的位置便被限制住了,下一個皇後需要一直找直到找到安全位置,如果沒有找到,那麼便要回溯到上一個皇後,那麼上一個皇後的位置就要改變,這樣一直遞歸直到所有的情況都被舉出。
六、動態規劃演算法
動態規劃過程是:每次決策依賴於當前狀態,又隨即引起狀態的轉移。一個決策序列就是在變化的狀態中產生出來的,所以,這種多階段最優化決策解決問題的過程就稱為動態規劃。
動態規劃演算法適用於當某階段狀態給定以後,在這階段以後的過程的發展不受這段以前各段狀態的影響,即無後效性的問題。
典型例子比如說背包問題,給定背包容量及物品重量和價值,要求背包裝的物品價值最大。