首先說一下求d的答案,ed=1mod(p-1)(q-1)=1mod60即7d=1mod60的意思是e與d的乘積對(p-1)(q-1)取余結果是1,題目給出e=7,(p-1)(q-1)可以求得是60,即(7d)%60=1【%是取余符號】,可以得出43*7=301=5*60+1
題目已給出M=17,秘文C=M^e mod n即M的e次方對n取余,代入數值為17^5%143=10
希望對你有幫助
B. 一個RSA演算法的加密運算,需要完整的演算過程。
RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1
這樣最終得到三個數:
n
d
e
設消息為數M
(M
<n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則
m
==
M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。
在對稱加密中:
n
d兩個數構成公鑰,可以告訴別人;
n
e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。
rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n
d的情況下無法獲得e;同樣在已知n
e的情況下無法
求得d。
rsa簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用rsa
來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。
最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。
C. 利用RSA演算法運算,如果p=11,q=13, e=103,對明文3進行加密.求d及密文
取2個質數p=11,q=13,p和q的乘積為n=p×q=143,算出φ(n)=n-p-q+1=120;再選取一個與φ(n)互質的數,例如e=7,則公開密鑰=n,e=143,7.
對於這個e值,用歐幾里德擴展演算法可以算出其逆:d=103.因為e×d=7×103=721,滿足e×d mod z =1;即721 mod 120=1成立.則秘密密鑰=n,d=143,103,
設發送方需要發送機密信息(明文)m=3,發送方已經從公開媒體得到了接收方的公開密鑰n,e=143,7,於是發送方算出加密後的密文c= m的e次方 mod n=42