導航:首頁 > 源碼編譯 > 自動機學習演算法

自動機學習演算法

發布時間:2025-06-09 11:06:43

『壹』 ai怎麼識別代碼的演算法

ai識別代碼的演算法通常涉及自然語言處理(NLP)和機器學習技術。下面是一種常見的演算法流程:
1、詞法分析(LexicalAnalysis):ai將代碼文本分解為詞法單元(tokens),如關鍵字、標識符、運算符等。這一步通常使用正則表達式或有限自動機(FiniteStateMachine)進行處理。
2、語法分析(SyntaxAnalysis):根據編程語言的語法規則,ai將詞法單元組織成語法結構,如抽象語法樹(AbstractSyntaxTree,AST)或語法分析樹。常用的演算法包括遞歸下降(RecursiveDescent)和LR分析(LRParsing)。
3、語義分析(SemanticAnalysis):在這一步中,ai演算法會檢查代碼的語義正確性,如變數聲明與使用的一致性、類型匹配等。這涉及符號表的構建和類型推導。
4、代碼優化(CodeOptimization):ai對生成的中間表示(如AST)進行優化,以提高代碼性能或可讀性。優化技術包括常量折疊、循環展開、死代碼消除等。
5、代碼生成(CodeGeneration):根據中間表示,生成ai可執行的代碼。這涉及到將高級語言轉化為低級的匯編語言或機器碼。在以上過程中,ai可以用於改進代碼識別的准確性和效率。例如,使用ai學習模型進行詞法分析和語法分析,可以提高對不同編程語言和代碼風格的適應性。此外,ai也可以用於代碼推薦、自動錯誤修復等應用,從而進一步提升開發效率和代碼質量。

『貳』 常見演算法有哪些

模擬
擬陣
暴力
貪心
二分法
整體二
三分法
一般動規與遞推
斯坦納樹
動態樹分治
2-SAT
並查集
差分約束
最短路
最小割
費用流
最大流
有上下界網路流
虛樹
矩陣樹定理
最小生成樹
點分治
樹鏈剖分
prufer編碼
哈夫曼樹
拉格朗日乘數法
BSGS
博弈論
矩陣乘法
高斯消元
容斥原理
抽屜原理
模線性方程組
莫比烏斯反演
快速傅里葉變換
擴展歐幾里得演算法(
裴蜀定理
dfs序
深度搜索
迭代深搜
廣度搜索
雙向廣搜
啟發式搜索
dancing link
迴文自動機
KMP
字典樹
後綴數組
AC自動機
後綴自動機
manacher
凸包
掃描線
三角剖分
旋轉卡殼
半平面交
cdq分治
莫隊演算法
爬山演算法
分數規劃
模擬退火
朱劉演算法
隨機增量法
倍增演算法

『叄』 那些經典演算法:AC自動機

第一次看到這個名字的時候覺得非常高級,深入學習就發現,AC就是一種多模式字元串匹配演算法。前面介紹的BF演算法,RK演算法,BM演算法,KMP演算法都屬於單模式匹配演算法,而Trie樹是多模式匹配演算法,多模式匹配演算法就是在一個主串中查找多個模式串,舉個最常用的例子,比如我們在論壇發表評論或發帖的時候,一般論壇後台會檢測我們發的內容是否有敏感詞,如果有敏感詞要麼是用***替換,要麼是不讓你發送,我們評論是通常是一段話,這些敏感詞可能成千上萬,如果用每個敏感詞都在評論的內容中查找,效率會非常低,AC自動機中,主串會與所有的模式串同時匹配,這時候就可以利用AC自動機這種多模式匹配演算法來完成高效的匹配,

AC自動機演算法是構造一個Trie樹,然後再添加額外的失配指針。這些額外的適配指針准許在查找字元串失敗的時候進行回退(例如在Trie樹種查找單詞bef失敗後,但是在Trie樹種存中bea這個單詞,失配指針會指向前綴be),轉向某些前綴分支,免於重復匹配前綴,提高演算法效率。
常見於IDS軟體或病毒檢測軟體中病毒特徵字元串,可以構建AC自動機,在這種情況下,演算法的時間復雜度為輸入字元串的長度和匹配數量之和。

假設現有模式字元串集合:{abd,abdk, abchijn, chnit, ijabdf, ijaij} 構建AC自動機如下:

說明:

1)當前指針curr指向AC自動機的根節點:curr=root。
2)從文本串中讀取(下)一個字元。
3)從當前節點的所有孩子節點中尋找與該字元匹配的節點:

4)若fail == null,則說明沒有任何子串為輸入字元串的前綴,這時設置curr = root,執行步驟2.
若fail != null,則將curr指向 fail節點,指向步驟3。
理解起來比較復雜,找網上的一個例子,假設文本串text = 「abchnijabdfk」。
查找過程如下:

說明如下:
1)按照字元串順序依次遍歷到:a-->b-->c-->h ,這時候發現文本串中下一個節點n和Trie樹中下一個節點i不匹配,且h的fail指針非空,跳轉到Trie樹中ch位置。
注意c-->h的時候判斷h不為結束節點,且c的fail指針也不是結束節點。
2)再接著遍歷n-->i,發現i節點在Trie樹中的下一個節點找不到j,且有fail指針,則繼續遍歷,
遍歷到d的時候要注意,d的下一個匹配節點f是結束字元,所以得到匹配字元串:ijabdf,且d的fail節點也是d,且也是結束字元,所以得到匹配字元串abd,不過不是失敗的匹配,所以curr不跳轉。

先將目標字元串插入到Trie樹種,然後通過廣度有限遍歷為每個節點的所有孩子節點找到正確的fail指針。
具體步驟如下:
1)將根節點的所有孩子節點的fail指針指向根節點,然後將根節點的所有孩子節點依次入隊列。
2)若隊列不為空:
2.1)出列一個字元,將出列的節點記為curr,failTo表示curr的
fail指針,即failTo = curr.fail 。
2.2) 判斷curr.child[i] == failTo.child[i]是不是成立:
成立:curr.child[i].fail = failTo.child[i]
因為當前字元串的後綴和Tire樹的前綴最長部分是到fail,
且子字元和failTo的下一個字元相同,則fail指針就是
failTo.child[i]。
不成立: 判斷failTo是不是為null是否成立:
成立: curr.child[i].fail = root = null。
不成立: failTo = failTo.fail 繼續2.2
curr.child[i]入列,再次執行步驟2)。
3)隊列為空結束。

每個結點的fail指向的解決順序是按照廣度有限遍歷的順序完成的,或者說層序遍歷的順序進行,我們根據父結點的fail指針來求當前節點的fail指針。

上圖為例,我們要解決y節點的fail指針問題,已經知道y節點的父節點x1的fail是指向x2的,根據fail指針的定義,我們知道紅色橢圓中的字元串序列肯定相等,而且是最長的公共部分。依據y.fail的含義,如果x2的某個孩子節點和節點y表示的表示的字元相等,y的fail就指向它。
如果x2的孩子節點中不存在節點y表示的字元。由於x2.fail指向x3,根據x2.fail的含義,我們知道綠色框中的字元序列是相同的。顯然如果x3的某個孩子和節點y表示字元相等,則y.fail就指向它。

如果x3的孩子節點不存在節點y表示的字元,我們重復這個步驟,直到xi的fail節點指向null,說明我們達到頂層,只要y.fail= root就可以了。
構造過程就是知道當前節點的最長公共前綴的情況下,去確定孩子節點的最長公共前綴。

下圖中,每個節點都有fail虛線,指向根節點的虛線沒畫出,求圖中c的孩子節點h的fail指向:

原圖中,深藍色的框出來的是已經確定fail指針的,求紅色框中h節點的fail指針。
這時候,我們看下h的父親節點c的fail指針指向,為ch中的c(這表示abc字元串的所有後綴bc和c和Trie樹的所有前綴中最長公共部分為c),且這個c節點的孩子節點中有字元為h的字元,所以圖中紅色框中框出的h節點的fail指針指向 ch字元串中的h。

求紅色框中i的fail指針指向,上圖中,我們可以看到i的父親節點h的指向為ch中的h,(也就是說我們的目標字元串結合中所有前綴和字元序列abch的所有後綴在Trie樹中最長前綴為ch。)我們比較i節點和ch中的h的所有子節點,發現h只有一個n的子節點,所以沒辦法匹配,那就繼續找ch中h的fail指針,圖中沒畫出,那麼就是它的fail指針就是root,然後去看root所有子節點中有沒有和i相等的,發現最右邊的i是和我們要找的i相等的,所以我們就把i的fail指針指向i,如後面的圖。

『肆』 是的 計算機演算法

計算機演算法是以一步接一步的方式來詳細描述計算機如何將輸入轉化為所要求的輸出的過程,或者說,演算法是對計算機上執行的計算過程的具體描述。
編輯本段演算法性質一個演算法必須具備以下性質: (1)演算法首先必須是正確的,即對於任意的一組輸入,包括合理的輸入與不合理的輸入,總能得到預期的輸出。如果一個演算法只是對合理的輸入才能得到預期的輸出,而在異常情況下卻無法預料輸出的結果,那麼它就不是正確的。 (2)演算法必須是由一系列具體步驟組成的,並且每一步都能夠被計算機所理解和執行,而不是抽象和模糊的概念。 (3)每個步驟都有確定的執行順序,即上一步在哪裡,下一步是什麼,都必須明確,無二義性。 (4)無論演算法有多麼復雜,都必須在有限步之後結束並終止運行,即演算法的步驟必須是有限的。在任何情況下,演算法都不能陷入無限循環中。 一個問題的解決方案可以有多種表達方式,但只有滿足以上4個條件的解才能稱之為演算法。編輯本段重要演算法A*搜尋演算法
俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。
Beam Search
束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法,他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。
二分取中查找演算法
一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。
Branch and bound
分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。
數據壓縮
數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。
Diffie–Hellman密鑰協商
Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。
Dijkstra』s 演算法
迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。
動態規劃
動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。
歐幾里得演算法
在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。
最大期望(EM)演算法
在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。
快速傅里葉變換(FFT)
快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。
哈希函數
HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。
堆排序
Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。
歸並排序
Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
RANSAC 演算法
RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。
RSA加密演演算法
這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。
並查集Union-find
並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。
Viterbi algorithm
尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。編輯本段演算法特點1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他是為有效演算法。 2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。 3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。 4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。 5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。編輯本段演算法與程序雖然演算法與計算機程序密切相關,但二者也存在區別:計算機程序是演算法的一個實例,是將演算法通過某種計算機語言表達出來的具體形式;同一個演算法可以用任何一種計算機語言來表達。 演算法列表 圖論 路徑問題 0/1邊權最短路徑 BFS 非負邊權最短路徑(Dijkstra) 可以用Dijkstra解決問題的特徵 負邊權最短路徑 Bellman-Ford Bellman-Ford的Yen-氏優化 差分約束系統 Floyd 廣義路徑問題 傳遞閉包 極小極大距離 / 極大極小距離 Euler Path / Tour 圈套圈演算法 混合圖的 Euler Path / Tour Hamilton Path / Tour 特殊圖的Hamilton Path / Tour 構造 生成樹問題 最小生成樹 第k小生成樹 最優比率生成樹 0/1分數規劃 度限制生成樹 連通性問題 強大的DFS演算法 無向圖連通性 割點 割邊 二連通分支 有向圖連通性 強連通分支 2-SAT 最小點基 有向無環圖 拓撲排序 有向無環圖與動態規劃的關系 二分圖匹配問題 一般圖問題與二分圖問題的轉換思路 最大匹配 有向圖的最小路徑覆蓋 0 / 1矩陣的最小覆蓋 完備匹配 最優匹配 穩定婚姻 網路流問題 網路流模型的簡單特徵和與線性規劃的關系 最大流最小割定理 最大流問題 有上下界的最大流問題 循環流 最小費用最大流 / 最大費用最大流 弦圖的性質和判定 組合數學 解決組合數學問題時常用的思想 逼近 遞推 / 動態規劃 概率問題 Polya定理 計算幾何 / 解析幾何 計算幾何的核心:叉積 / 面積 解析幾何的主力:復數 基本形 點 直線,線段 多邊形 凸多邊形 / 凸包 凸包演算法的引進,卷包裹法 Graham掃描法 水平序的引進,共線凸包的補丁 完美凸包演算法 相關判定 兩直線相交 兩線段相交 點在任意多邊形內的判定 點在凸多邊形內的判定 經典問題 最小外接圓 近似O(n)的最小外接圓演算法 點集直徑 旋轉卡殼,對踵點 多邊形的三角剖分 數學 / 數論 最大公約數 Euclid演算法 擴展的Euclid演算法 同餘方程 / 二元一次不定方程 同餘方程組 線性方程組 高斯消元法 解mod 2域上的線性方程組 整系數方程組的精確解法 矩陣 行列式的計算 利用矩陣乘法快速計算遞推關系 分數 分數樹 連分數逼近 數論計算 求N的約數個數 求phi(N) 求約數和 快速數論變換 …… 素數問題 概率判素演算法 概率因子分解 數據結構 組織結構 二叉堆 左偏樹 二項樹 勝者樹 跳躍表 樣式圖標 斜堆 reap 統計結構 樹狀數組 虛二叉樹 線段樹 矩形面積並 圓形面積並 關系結構 Hash表 並查集 路徑壓縮思想的應用 STL中的數據結構 vector deque set / map 動態規劃 / 記憶化搜索 動態規劃和記憶化搜索在思考方式上的區別 最長子序列系列問題 最長不下降子序列 最長公共子序列 一類NP問題的動態規劃解法 樹型動態規劃 背包問題 動態規劃的優化 四邊形不等式 函數的凸凹性 狀態設計 規劃方向 線性規劃 常用思想 二分 最小表示法 串 KMP Trie結構 後綴樹/後綴數組 LCA/RMQ 有限狀態自動機理論 排序 選擇/冒泡 快速排序 堆排序 歸並排序 基數排序 拓撲排序 排序網路
擴展閱讀:
1
《計算機演算法設計與分析導論》朱清新等編著人民郵電出版社
開放分類:
計算機,演算法

閱讀全文

與自動機學習演算法相關的資料

熱點內容
七月程序員面試 瀏覽:894
蘋果app簽名過期怎麼續期 瀏覽:531
c編譯器的配置 瀏覽:776
地鐵逃生卡加密箱容量 瀏覽:421
jpegimage編譯不通過 瀏覽:222
怎麼加密板塊 瀏覽:450
知道ftp如何直接登錄伺服器 瀏覽:972
一加8手機怎麼應用加密 瀏覽:676
u盤加密電視能讀電腦不能讀 瀏覽:350
透明袋子加密封條圖片 瀏覽:599
下載安卓軟體叫什麼名字 瀏覽:250
伺服器如何切割多位元組 瀏覽:321
linux圖形界面使用 瀏覽:989
javaset重復 瀏覽:190
splunk命令 瀏覽:42
cad怎麼取消右鍵重復上次命令 瀏覽:402
vc2010版本編譯在哪裡 瀏覽:821
驍尤安卓手機如何下應用 瀏覽:249
java語言平台 瀏覽:863
京東雲伺服器怎麼換ip 瀏覽:609