❶ 局部路徑規劃演算法
局部路徑規劃,常用的演算法有柵格法、人工勢場法、遺傳演算法、空間搜索法、層次法、動作行為法、Dijkstra演算法、Lee演算法、Floyd演算法等
❷ 遺傳演算法怎麼回事
遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。它是現代有關智能計算中的關鍵技術。對於一個求函數最大值的優化問題(求函數最小值也類同),一般可以描述為下列數學規劃模型: 遺傳演算法式中為決策變數,為目標函數式,式2-2、2-3為約束條件,U是基本空間,R是U的子集。滿足約束條件的解X稱為可行解,集合R表示所有滿足約束條件的解所組成的集合,稱為可行解集合。遺傳演算法的基本運算過程如下:a)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。b)個體評價:計算群體P(t)中各個個體的適應度。c)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。d)交叉運算;將交叉運算元作用於群體。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。遺傳演算法中起核心作用的就是交叉運算元。e)變異運算:將變異運算元作用於群體。即是對群體中的個體串的某些基因座上的基因值作變動。群體P(t)經過選擇、交叉、變異運算之後得到下一代群體P(t 1)。f)終止條件判斷:若tT,則以進化過程中所得到的具有最大適應度個體作為最優解輸出,終止計算
❸ 、局部路徑規劃方法
基於感測器信息的局部路徑規劃,常用的方法有柵格法、人工勢場法、遺傳演算法、空間搜索法、層次法、動作行為法、Dijkstra演算法、Lee演算法、Floyd演算法等。
❹ 遺傳演算法的現狀
進入90年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳演算法的應用研究顯得格外活躍,不但它的應用領域擴大,而且利用遺傳演算法進行優化和規則學習的能力也顯著提高,同時產業應用方面的研究也在摸索之中。此外一些新的理論和方法在應用研究中亦得到了迅速的發展,這些無疑均給遺傳演算法增添了新的活力。遺傳演算法的應用研究已從初期的組合優化求解擴展到了許多更新、更工程化的應用方面。
隨著應用領域的擴展,遺傳演算法的研究出現了幾個引人注目的新動向:一是基於遺傳演算法的機器學習,這一新的研究課題把遺傳演算法從歷來離散的搜索空間的優化搜索演算法擴展到具有獨特的規則生成功能的嶄新的機器學習演算法。這一新的學習機制對於解決人工智慧中知識獲取和知識優化精煉的瓶頸難題帶來了希望。二是遺傳演算法正日益和神經網路、模糊推理以及混沌理論等其它智能計算方法相互滲透和結合,這對開拓21世紀中新的智能計算技術將具有重要的意義。三是並行處理的遺傳演算法的研究十分活躍。這一研究不僅對遺傳演算法本身的發展,而且對於新一代智能計算機體系結構的研究都是十分重要的。四是遺傳演算法和另一個稱為人工生命的嶄新研究領域正不斷滲透。所謂人工生命即是用計算機模擬自然界豐富多彩的生命現象,其中生物的自適應、進化和免疫等現象是人工生命的重要研究對象,而遺傳演算法在這方面將會發揮一定的作用,五是遺傳演算法和進化規劃(Evolution Programming,EP)以及進化策略(Evolution Strategy,ES)等進化計算理論日益結合。EP和ES幾乎是和遺傳演算法同時獨立發展起來的,同遺傳演算法一樣,它們也是模擬自然界生物進化機制的智能計算方法,即同遺傳演算法具有相同之處,也有各自的特點。目前,這三者之間的比較研究和彼此結合的探討正形成熱點。
1991年D.Whitey在他的論文中提出了基於領域交叉的交叉運算元(Adjacency based crossover),這個運算元是特別針對用序號表示基因的個體的交叉,並將其應用到了TSP問題中,通過實驗對其進行了驗證。D.H.Ackley等提出了隨機迭代遺傳爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)採用了一種復雜的概率選舉機制,此機制中由m個「投票者」來共同決定新個體的值(m表示群體的大小)。實驗結果表明,SIGH與單點交叉、均勻交叉的神經遺傳演算法相比,所測試的六個函數中有四個表現出更好的性能,而且總體來講,SIGH比現存的許多演算法在求解速度方面更有競爭力。H.Bersini和G.Seront將遺傳演算法與單一方法(simplex method)結合起來,形成了一種叫單一操作的多親交叉運算元(simplex crossover),該運算元在根據兩個母體以及一個額外的個體產生新個體,事實上他的交叉結果與對三個個體用選舉交叉產生的結果一致。同時,文獻還將三者交叉運算元與點交叉、均勻交叉做了比較,結果表明,三者交叉運算元比其餘兩個有更好的性能。
1992年,英國格拉斯哥大學的李耘(Yun Li)指導博士生將基於二進制基因的遺傳演算法擴展到七進制、十進制、整數、浮點等的基因,以便將遺傳演算法更有效地應用於模糊參量,系統結構等的直接優化,於1997年開發了可能是世界上最受歡迎的、也是最早之一的遺傳/進化演算法的網上程序 EA_demo,以幫助新手在線互動式了解進化計算的編碼和工作原理 ,並在格拉斯哥召開第二屆IEE/IEEE遺傳演算法應用國際會議,於2000年組織了由遺傳編程(Genetic Programming)發明人斯坦福的 John Koza 等參加的 EvoNet 研討會,探索融合GA與GP結構尋優,超越固定結構和數值優化的局限性。
國內也有不少的專家和學者對遺傳演算法的交叉運算元進行改進。2002年,戴曉明等應用多種群遺傳並行進化的思想,對不同種群基於不同的遺傳策略,如變異概率,不同的變異運算元等來搜索變數空間,並利用種群間遷移運算元來進行遺傳信息交流,以解決經典遺傳演算法的收斂到局部最優值問題
2004年,趙宏立等針對簡單遺傳演算法在較大規模組合優化問題上搜索效率不高的現象,提出了一種用基因塊編碼的並行遺傳演算法(Building-block Coded Parallel GA,BCPGA)。該方法以粗粒度並行遺傳演算法為基本框架,在染色體群體中識別出可能的基因塊,然後用基因塊作為新的基因單位對染色體重新編碼,產生長度較短的染色體,在用重新編碼的染色體群體作為下一輪以相同方式演化的初始群體。
2005年,江雷等針對並行遺傳演算法求解TSP問題,探討了使用彈性策略來維持群體的多樣性,使得演算法跨過局部收斂的障礙,向全局最優解方向進化。
❺ 遺傳演算法研究進展
遺傳演算法[56,53]研究的興起是在20世紀80年代末和90年代初期,但它的歷史起源可追溯到20世紀60年代初期。早期的研究大多以對自然遺傳系統的計算機模擬為主。早期遺傳演算法的研究特點是側重於對一些復雜的操作的研究。雖然其中像自動博弈、生物系統模擬、模式識別和函數優化等給人以深刻的印象,但總的來說這是一個無明確目標的發展時期,缺乏帶有指導性的理論和計算工具的開拓。這種現象直到20世紀70年代中期由於Holland和De Jong的創造性研究成果的發表才得到改觀。當然,早期的研究成果對於遺傳演算法的發展仍然有一定的影響,尤其是其中一些有代表性的技術和方法已為當前的遺傳演算法所吸收和發展。
在遺傳演算法作為搜索方法用於人工智慧系統中之前,已有不少生物學家用計算機來模擬自然遺傳系統。尤其是Fraser的模擬研究,他於1962年提出了和現在的遺傳演算法十分相似的概念和思想。但是,Fraser和其他一些學者並未認識到自然遺傳演算法可以轉化為人工遺傳演算法。Holland教授及其學生不久就認識到這一轉化的重要性,Holland認為比起尋找這種或那種具體的求解問題的方法來說,開拓一種能模擬自然選擇遺傳機制的帶有一般性的理論和方法更有意義。在這一時期,Holland不但發現了基於適應度的人工遺傳選擇的基本作用,而且還對群體操作等進行了認真的研究。1965年,他首次提出了人工遺傳操作的重要性,並把這些應用於自然系統和人工系統中。
1967年,Bagley在他的論文中首次提出了遺傳演算法(genetic algorithm)這一術語,並討論了遺傳演算法在自動博弈中的應用。他所提出的包括選擇、交叉和變異的操作已與目前遺傳演算法中的相應操作十分接近。尤其是他對選擇操作做了十分有意義的研究。他認識到,在遺傳進化過程的前期和後期,選擇概率應合適地變動。為此,他引入了適應度定標(scaling)概念,這是目前遺傳演算法中常用的技術。同時,他也首次提出了遺傳演算法自我調整概念,即把交叉和變異的概率融於染色體本身的編碼中,從而可實現演算法自我調整優化。盡管Bagley沒有對此進行計算機模擬實驗,但這些思想對於後來遺傳演算法的發展所起的作用是十分明顯的。
在同一時期,Rosenberg也對遺傳演算法進行了研究,他的研究依然是以模擬生物進化為主,但他在遺傳操作方面提出了不少獨特的設想。1970年Cavicchio把遺傳演算法應用於模式識別中。實際上他並未直接涉及到模式識別,而僅用遺傳演算法設計一組用於識別的檢測器。Cavicchio對於遺傳操作以及遺傳演算法的自我調整也做了不少有特色的研究。
Weinberg於1971年發表了題為《活細胞的計算機模擬》的論文。由於他和Rosenberg一樣注意於生物遺傳的模擬,所以他對遺傳演算法的貢獻有時被忽略。實際上,他提出的多層次或多級遺傳演算法至今仍給人以深刻的印象。
第一個把遺傳演算法用於函數優化的是Hollstien。1971年他在論文《計算機控制系統中的人工遺傳自適應方法》中闡述了遺傳演算法用於數字反饋控制的方法。實際上,他主要是討論了對於二變數函數的優化問題。其中,對於優勢基因控制、交叉和變異以及各種編碼技術進行了深入的研究。
1975年在遺傳演算法研究的歷史上是十分重要的一年。這一年,Holland出版了他的著名專著《自然系統和人工系統的適配》。該書系統地闡述了遺傳演算法的基本理論和方法,並提出了對遺傳演算法的理論研究和發展極為重要的模式理論(schemata theory)。該理論首次確認了結構重組遺傳操作對於獲得隱並行性的重要性。直到這時才知道遺傳操作到底在干什麼,為什麼又幹得那麼出色,這對於以後陸續開發出來的遺傳操作具有不可估量的指導作用。
同年,De Jong完成了他的重要論文《遺傳自適應系統的行為分析》。他在該論文中所做的研究工作可看作是遺傳演算法發展進程中的一個里程碑,這是因為他把Holland的模式理論與他的計算實驗結合起來。盡管De Jong和Hollstien一樣主要側重於函數優化的應用研究,但他將選擇、交叉和變異操作進一步完善和系統化,同時又提出了諸如代溝(generation gap)等新的遺傳操作技術。可以認為,De Jong的研究工作為遺傳演算法及其應用打下了堅實的基礎,他所得出的許多結論迄今仍具有普遍的指導意義。
進入20世紀80年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳演算法的應用研究顯得格外活躍,不但它的應用領域擴大,而且利用遺傳演算法進行優化和規則學習的能力也顯著提高,同時產業應用方面的研究也在摸索之中。此外一些新的理論和方法在應用研究中亦得到了迅速的發展,這些無疑均給遺傳演算法增添了新的活力。
隨著應用領域的擴展,遺傳演算法的研究出現了幾個引人注目的新動向:一是基於遺傳演算法的機器學習(Genetic Base Machine Learning),這一新的研究課題把遺傳演算法從歷來離散的搜索空間的優化搜索演算法擴展到具有獨特的規則生成功能的嶄新的機器學習演算法。這一新的學習機制對於解決人工智慧中知識獲取和知識優化精煉的瓶頸難題帶來了希望。二是遺傳演算法正日益和神經網路、模糊推理以及混沌理論等其他智能計算方法相互滲透和結合,這對開拓21世紀中新的智能計算技術將具有重要的意義。三是並行處理的遺傳演算法的研究十分活躍。這一研究不僅對遺傳演算法本身的發展,而且對於新一代智能計算機體系結構的研究都是十分重要的。四是遺傳演算法和另一個稱為人工生命的嶄新研究領域正不斷滲透。所謂人工生命即是用計算機模擬自然界豐富多彩的生命現象,其中生物的自適應、進化和免疫等現象是人工生命的重要研究對象,而遺傳演算法在這方面將會發揮一定的作用。五是遺傳演算法和進化規劃(Evolution Programming,EP)以及進化策略(Evolution Strategy,ES)等進化計算理論日益結合。EP和ES幾乎是和遺傳演算法同時獨立發展起來的,同遺傳演算法一樣,它們也是模擬自然界生物進化機制的智能計算方法,既同遺傳演算法具有相同之處,也有各自的特點。
隨著遺傳演算法研究和應用的不斷深入和發展,一系列以遺傳演算法為主題的國際會議十分活躍。從1985年開始,國際遺傳演算法會議,即ICGA(International Conference on Genetic Algorithm)每兩年舉行一次。在歐洲,從1990年開始也每隔一年舉辦一次類似的會議,即 PPSN(Parallel Problem Solving from Nature)會議。除了遺傳演算法外,大部分有關ES和EP的學術論文也出現在PPSN中。另外,以遺傳演算法的理論基礎為中心的學術會議有FOGA(Foundation of Genetic Algorithm)。它也是從1990年開始,隔年召開一次。這些國際學術會議論文集中反映了遺傳演算法近些年來的最新發展和動向。
❻ 大火的自動駕駛汽車都涉及了哪些技術
智能車(Intelligent vehicle)是一個集環境感知、規劃決策、多等級輔助駕駛等功能於一體的綜合系統,它集中運用了計算機、現代感測、信息融合、通訊、人工智慧及自動控制等技術,是典型的高新技術綜合體。下邊就先給自動駕駛技術做一個總的分類,如下圖所示,自動駕駛的關鍵技術依次可以分為環境感知,行為決策,路徑規劃和運動控制四大部分。
路徑規劃的方法根據智能車輛工作環境信息的完整程度,可分為兩大類:
基於完整環境信息的全局路徑規劃方法;例如,從上海到北京有很多條路,規劃處一條作為行駛路線即為全局規劃。如柵格法、可視圖法、拓撲法、自由空間法、神經網路法等靜態路徑規劃演算法。
基於感測器實時獲取環境信息的局部路徑規劃方法;例如,在全局規劃好的上海到北京的那條路線上會有其他車輛或者障礙物,想要避過這些障礙物或者車輛,需要轉向調整車道,這就是局部路徑規劃。局部路徑規劃的方法包括:人工勢場法、矢量域直方圖法、虛擬力場法、遺傳演算法等動態路徑規劃演算法等。
運動控制
規劃好了行駛路徑,接下來就需要控制車輛沿著期望的軌跡行駛,這就是運動控制部分需要完成的內容。運動控制包括橫向控制和縱向控制,簡單來說橫向控制就是轉向控制,縱向控制就是速度控制, 現在研究比較多的是橫向控制,所運用的方法主要包括滑膜控制、模糊控制、神經網路控制、最優控制、自適應控制和純跟蹤控制等。通俗的講就是,橫向控制為給定一個速度,通過控制轉向達到車輛沿著預定軌跡行駛的目的;而縱向控制目的是為了滿足車輛行駛過程中的速度要求,有時候還需要配合橫向控制達到滿足車輛在軌跡跟蹤的同時,還需要滿足安全性、穩定性和舒適性的目的。因為車輛是一個特別復雜的系統,橫向、縱向和垂向都有耦合關系的存在,因此就需要對智能車輛進行橫、縱向,甚至橫、縱、垂向的協同控制。由於其耦合關系的復雜性,所以說智能車輛運動控制的協同控制技術,也是該部分的技術難點。