『壹』 在線等,計算機高手,java深度搜索樹代碼
//偽代碼。我文本框里直接寫的
void dfs(treeNode<T> a)
{
iteretor itr=a.children();
while (itr.hasNext())
{
dfs((treeNode)itr.next());//遞歸調用
}
}
就是這樣了。每次迭代的查詢子節點,
如果子節點還有子節點就繼續向下找,一直找到最深。
直到沒有了就彈棧,看看上一級還有沒有其他的子節點。
有就遍歷他的第二個子節點,沒有就彈。
這樣的話就是深度優先搜索了。
『貳』 百度地圖的路徑搜索演算法
這個還是要問程序猿,現在比較流行A*演算法,至於網路是否開發出了新的演算法不得而知,畢竟沒有完全相同的程序。
給你看一篇文獻:
地圖中最短路徑的搜索演算法研究
學生:李小坤 導師:董巒
摘要:目前為止, 國內外大量專家學者對「最短路徑問題」進行了深入的研究。本文通過理論分析, 結合實際應用,從各個方面較系統的比較廣度優先搜索演算法(BFS)、深度優先搜索演算法(DFS)、A* 演算法的優缺點。
關鍵詞:最短路徑演算法;廣度優先演算法;深度優先演算法;A*演算法;
The shortest path of map's search algorithm
Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic.
Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm;
前言:
最短路徑問題是地理信息系統(GIS)網路分析的重要內容之一,而且在圖論中也有著重要的意義。實際生活中許多問題都與「最短路徑問題」有關, 比如: 網路路由選擇, 集成電路設計、布線問題、電子導航、交通旅遊等。本文應用深度優先演算法,廣度優先演算法和A*演算法,對一具體問題進行討論和分析,比較三種算的的優缺點。
在地圖中最短路徑的搜索演算法研究中,每種演算法的優劣的比較原則主要遵循以下三點:[1]
(1)演算法的完全性:提出一個問題,該問題存在答案,該演算法能夠保證找到相應的答案。演算法的完全性強是演算法性能優秀的指標之一。
(2)演算法的時間復雜性: 提出一個問題,該演算法需要多長時間可以找到相應的答案。演算法速度的快慢是演算法優劣的重要體現。
(3)演算法的空間復雜性:演算法在執行搜索問題答案的同時,需要多少存儲空間。演算法佔用資源越少,演算法的性能越好。
地圖中最短路徑的搜索演算法:
1、廣度優先演算法
廣度優先演算法(Breadth-First-Search),又稱作寬度優先搜索,或橫向優先搜索,是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型,Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。廣度優先演算法其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。
廣度優先搜索演算法偽代碼如下:[2-3]
BFS(v)//廣度優先搜索G,從頂點v開始執行
//所有已搜索的頂點i都標記為Visited(i)=1.
//Visited的初始分量值全為0
Visited(v)=1;
Q=[];//將Q初始化為只含有一個元素v的隊列
while Q not null do
u=DelHead(Q);
for 鄰接於u的所有頂點w do
if Visited(w)=0 then
AddQ(w,Q); //將w放於隊列Q之尾
Visited(w)=1;
endif
endfor
endwhile
end BFS
這里調用了兩個函數:AddQ(w,Q)是將w放於隊列Q之尾;DelHead(Q)是從隊列Q取第一個頂點,並將其從Q中刪除。重復DelHead(Q)過程,直到隊列Q空為止。
完全性:廣度優先搜索演算法具有完全性。這意指無論圖形的種類如何,只要目標存在,則BFS一定會找到。然而,若目標不存在,且圖為無限大,則BFS將不收斂(不會結束)。
時間復雜度:最差情形下,BFS必須尋找所有到可能節點的所有路徑,因此其時間復雜度為,其中|V|是節點的數目,而 |E| 是圖中邊的數目。
空間復雜度:因為所有節點都必須被儲存,因此BFS的空間復雜度為,其中|V|是節點的數目,而|E|是圖中邊的數目。另一種說法稱BFS的空間復雜度為O(B),其中B是最大分支系數,而M是樹的最長路徑長度。由於對空間的大量需求,因此BFS並不適合解非常大的問題。[4-5]
2、深度優先演算法
深度優先搜索演算法(Depth First Search)英文縮寫為DFS,屬於一種回溯演算法,正如演算法名稱那樣,深度優先搜索所遵循的搜索策略是盡可能「深」地搜索圖。[6]其過程簡要來說是沿著頂點的鄰點一直搜索下去,直到當前被搜索的頂點不再有未被訪問的鄰點為止,此時,從當前輩搜索的頂點原路返回到在它之前被搜索的訪問的頂點,並以此頂點作為當前被搜索頂點。繼續這樣的過程,直至不能執行為止。
深度優先搜索演算法的偽代碼如下:[7]
DFS(v) //訪問由v到達的所有頂點
Visited(v)=1;
for鄰接於v的每個頂點w do
if Visited(w)=0 then
DFS(w);
endif
endfor
end DFS
作為搜索演算法的一種,DFS對於尋找一個解的NP(包括NPC)問題作用很大。但是,搜索演算法畢竟是時間復雜度是O(n!)的階乘級演算法,它的效率比較低,在數據規模變大時,這種演算法就顯得力不從心了。[8]關於深度優先搜索的效率問題,有多種解決方法。最具有通用性的是剪枝,也就是去除沒有用的搜索分支。有可行性剪枝和最優性剪枝兩種。
BFS:對於解決最短或最少問題特別有效,而且尋找深度小,但缺點是內存耗費量大(需要開大量的數組單元用來存儲狀態)。
DFS:對於解決遍歷和求所有問題有效,對於問題搜索深度小的時候處理速度迅速,然而在深度很大的情況下效率不高。
3、A*演算法
1968年的一篇論文,「P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths in graphs. IEEE Trans. Syst. Sci. and Cybernetics, SSC-4(2):100-107, 1968」。[9]從此,一種精巧、高效的演算法——A*演算法問世了,並在相關領域得到了廣泛的應用。A* 演算法其實是在寬度優先搜索的基礎上引入了一個估價函數,每次並不是把所有可擴展的結點展開,而是利用估價函數對所有未展開的結點進行估價, 從而找出最應該被展開的結點,將其展開,直到找到目標節點為止。
A*演算法主要搜索過程偽代碼如下:[10]
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
算起點的估價值;
將起點放入OPEN表;
while(OPEN!=NULL) //從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
endif
for(當前節點n 的每個子節點X)
算X的估價值;
if(X in OPEN)
if(X的估價值小於OPEN表的估價值)
把n設置為X的父親;
更新OPEN表中的估價值; //取最小路徑的估價值;
endif
endif
if(X inCLOSE)
if( X的估價值小於CLOSE表的估價值)
把n設置為X的父親;
更新CLOSE表中的估價值;
把X節點放入OPEN //取最小路徑的估價值
endif
endif
if(X not inboth)
把n設置為X的父親;
求X的估價值;
並將X插入OPEN表中; //還沒有排序
endif
end for
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
end while(OPEN!=NULL)
保存路徑,即 從終點開始,每個節點沿著父節點移動直至起點,這就是你的路徑;
A *演算法分析:
DFS和BFS在展開子結點時均屬於盲目型搜索,也就是說,它不會選擇哪個結點在下一次搜索中更優而去跳轉到該結點進行下一步的搜索。在運氣不好的情形中,均需要試探完整個解集空間, 顯然,只能適用於問題規模不大的搜索問題中。而A*演算法與DFS和BFS這類盲目型搜索最大的不同,就在於當前搜索結點往下選擇下一步結點時,可以通過一個啟發函數來進行選擇,選擇代價最少的結點作為下一步搜索結點而跳轉其上。[11]A *演算法就是利用對問題的了解和對問題求解過程的了解, 尋求某種有利於問題求解的啟發信息, 從而利用這些啟發信息去搜索最優路徑.它不用遍歷整個地圖, 而是每一步搜索都根據啟發函數朝著某個方向搜索.當地圖很大很復雜時, 它的計算復雜度大大優於D ijks tr a演算法, 是一種搜索速度非常快、效率非常高的演算法.但是, 相應的A*演算法也有它的缺點.啟發性信息是人為加入的, 有很大的主觀性, 直接取決於操作者的經驗, 對於不同的情形要用不同的啟發信息和啟發函數, 且他們的選取難度比較大,很大程度上找不到最優路徑。
總結:
本文描述了最短路徑演算法的一些步驟,總結了每個演算法的一些優缺點,以及演算法之間的一些關系。對於BFS還是DFS,它們雖然好用,但由於時間和空間的局限性,以至於它們只能解決規模不大的問題,而最短或最少問題應該選用BFS,遍歷和求所有問題時候則應該選用DFS。至於A*演算法,它是一種啟發式搜索演算法,也是一種最好優先的演算法,它適合於小規模、大規模以及超大規模的問題,但啟發式搜索演算法具有很大的主觀性,它的優劣取決於編程者的經驗,以及選用的啟發式函數,所以用A*演算法編寫一個優秀的程序,難度相應是比較大的。每種演算法都有自己的優缺點,對於不同的問題選擇合理的演算法,才是最好的方法。
參考文獻:
[1]陳聖群,滕忠堅,洪親,陳清華.四種最短路徑演算法實例分析[J].電腦知識與技術(學術交流),2007(16):1030-1032
[2]劉樹林,尹玉妹.圖的最短路徑演算法及其在網路中的應用[J].軟體導刊,2011(07):51-53
[3]劉文海,徐榮聰.幾種最短路徑的演算法及比較[J].福建電腦,2008(02):9-12
[4]鄧春燕.兩種最短路徑演算法的比較[J].電腦知識與技術,2008(12):511-513
[5]王蘇男,宋偉,姜文生.最短路徑演算法的比較[J].系統工程與電子技術,1994(05):43-49
[6]徐鳳生,李天志.所有最短路徑的求解演算法[J].計算機工程與科學,2006(12):83-84
[7]李臣波,劉潤濤.一種基於Dijkstra的最短路徑演算法[J].哈爾濱理工大學學報,2008(03):35-37
[8]徐鳳生.求最短路徑的新演算法[J].計算機工程與科學,2006(02).
[9] YanchunShen . An improved Graph-based Depth-First algorithm and Dijkstra algorithm program of police patrol [J] . 2010 International Conference on Electrical Engineering and Automatic Control , 2010(3) : 73-77
[10]部亞松.VC++實現基於Dijkstra演算法的最短路徑[J].科技信息(科學教研),2008(18):36-37
[11] 楊長保,王開義,馬生忠.一種最短路徑分析優化演算法的實現[J]. 吉林大學學報(信息科學版),2002(02):70-74
『叄』 圖的深度優先搜索和廣度優先搜索演算法的實現
//圖的遍歷演算法程序
//圖的遍歷是指按某條搜索路徑訪問圖中每個結點,使得每個結點均被訪問一次,而且僅被訪問一次。圖的遍歷有深度遍歷演算法和廣度遍歷演算法,程序如下:
#include <iostream>
//#include <malloc.h>
#define INFINITY 32767
#define MAX_VEX 20 //最大頂點個數
#define QUEUE_SIZE (MAX_VEX+1) //隊列長度
using namespace std;
bool *visited; //訪問標志數組
//圖的鄰接矩陣存儲結構
typedef struct{
char *vexs; //頂點向量
int arcs[MAX_VEX][MAX_VEX]; //鄰接矩陣
int vexnum,arcnum; //圖的當前頂點數和弧數
}Graph;
//隊列類
class Queue{
public:
void InitQueue(){
base=(int *)malloc(QUEUE_SIZE*sizeof(int));
front=rear=0;
}
void EnQueue(int e){
base[rear]=e;
rear=(rear+1)%QUEUE_SIZE;
}
void DeQueue(int &e){
e=base[front];
front=(front+1)%QUEUE_SIZE;
}
public:
int *base;
int front;
int rear;
};
//圖G中查找元素c的位置
int Locate(Graph G,char c){
for(int i=0;i<G.vexnum;i++)
if(G.vexs[i]==c) return i;
return -1;
}
//創建無向網
void CreateUDN(Graph &G){
int i,j,w,s1,s2;
char a,b,temp;
printf("輸入頂點數和弧數:");
scanf("%d%d",&G.vexnum,&G.arcnum);
temp=getchar(); //接收回車
G.vexs=(char *)malloc(G.vexnum*sizeof(char)); //分配頂點數目
printf("輸入%d個頂點.\n",G.vexnum);
for(i=0;i<G.vexnum;i++){ //初始化頂點
printf("輸入頂點%d:",i);
scanf("%c",&G.vexs[i]);
temp=getchar(); //接收回車
}
for(i=0;i<G.vexnum;i++) //初始化鄰接矩陣
for(j=0;j<G.vexnum;j++)
G.arcs[i][j]=INFINITY;
printf("輸入%d條弧.\n",G.arcnum);
for(i=0;i<G.arcnum;i++){ //初始化弧
printf("輸入弧%d:",i);
scanf("%c %c %d",&a,&b,&w); //輸入一條邊依附的頂點和權值
temp=getchar(); //接收回車
s1=Locate(G,a);
s2=Locate(G,b);
G.arcs[s1][s2]=G.arcs[s2][s1]=w;
}
}
//圖G中頂點k的第一個鄰接頂點
int FirstVex(Graph G,int k){
if(k>=0 && k<G.vexnum){ //k合理
for(int i=0;i<G.vexnum;i++)
if(G.arcs[k][i]!=INFINITY) return i;
}
return -1;
}
//圖G中頂點i的第j個鄰接頂點的下一個鄰接頂點
int NextVex(Graph G,int i,int j){
if(i>=0 && i<G.vexnum && j>=0 && j<G.vexnum){ //i,j合理
for(int k=j+1;k<G.vexnum;k++)
if(G.arcs[i][k]!=INFINITY) return k;
}
return -1;
}
//深度優先遍歷
void DFS(Graph G,int k){
int i;
if(k==-1){ //第一次執行DFS時,k為-1
for(i=0;i<G.vexnum;i++)
if(!visited[i]) DFS(G,i); //對尚未訪問的頂點調用DFS
}
else{
visited[k]=true;
printf("%c ",G.vexs[k]); //訪問第k個頂點
for(i=FirstVex(G,k);i>=0;i=NextVex(G,k,i))
if(!visited[i]) DFS(G,i); //對k的尚未訪問的鄰接頂點i遞歸調用DFS
}
}
//廣度優先遍歷
void BFS(Graph G){
int k;
Queue Q; //輔助隊列Q
Q.InitQueue();
for(int i=0;i<G.vexnum;i++)
if(!visited[i]){ //i尚未訪問
visited[i]=true;
printf("%c ",G.vexs[i]);
Q.EnQueue(i); //i入列
while(Q.front!=Q.rear){
Q.DeQueue(k); //隊頭元素出列並置為k
for(int w=FirstVex(G,k);w>=0;w=NextVex(G,k,w))
if(!visited[w]){ //w為k的尚未訪問的鄰接頂點
visited[w]=true;
printf("%c ",G.vexs[w]);
Q.EnQueue(w);
}
}
}
}
//主函數
void main(){
int i;
Graph G;
CreateUDN(G);
visited=(bool *)malloc(G.vexnum*sizeof(bool));
printf("\n廣度優先遍歷: ");
for(i=0;i<G.vexnum;i++)
visited[i]=false;
DFS(G,-1);
printf("\n深度優先遍歷: ");
for(i=0;i<G.vexnum;i++)
visited[i]=false;
BFS(G);
printf("\n程序結束.\n");
}
輸出結果為(紅色為鍵盤輸入的數據,權值都置為1):
輸入頂點數和弧數:8 9
輸入8個頂點.
輸入頂點0:a
輸入頂點1:b
輸入頂點2:c
輸入頂點3:d
輸入頂點4:e
輸入頂點5:f
輸入頂點6:g
輸入頂點7:h
輸入9條弧.
輸入弧0:a b 1
輸入弧1:b d 1
輸入弧2:b e 1
輸入弧3:d h 1
輸入弧4:e h 1
輸入弧5:a c 1
輸入弧6:c f 1
輸入弧7:c g 1
輸入弧8:f g 1
廣度優先遍歷: a b d h e c f g
深度優先遍歷: a b c d e f g h
程序結束.
已經在vc++內運行通過,這個程序已經達到要求了呀~
『肆』 鄰接表做深度優先遍歷和廣度優先遍歷的代碼
3、廣度優先搜索演算法
(1)鄰接表表示圖的廣度優先搜索演算法
void BFS(ALGraph*G,int k)
{// 以vk為源點對用鄰接表表示的圖G進行廣度優先搜索
int i;
CirQueue Q; //須將隊列定義中DataType改為int
EdgeNode *p;
InitQueue(&Q);//隊列初始化
//訪問源點vk
printf("visit vertex:%e",G->adjlist[k].vertex);
visited[k]=TRUE;
EnQueue(&Q,k);//vk已訪問,將其人隊。(實際上是將其序號人隊)
while(!QueueEmpty(&Q)){//隊非空則執行
i=DeQueue(&Q); //相當於vi出隊
p=G->adjlist[i].firstedge; //取vi的邊表頭指針
while(p){//依次搜索vi的鄰接點vj(令p->adjvex=j)
if(!visited[p->adivex]){ //若vj未訪問過
printf("visitvertex:%c",C->adjlistlp->adjvex].vertex); //訪問vj
visited[p->adjvex]=TRUE;
EnQueue(&Q,p->adjvex);//訪問過的vj人隊
}//endif
p=p->next;//找vi的下一鄰接點
}//endwhile
}//endwhile
}//end of BFS
(2)鄰接矩陣表示的圖的廣度優先搜索演算法
void BFSM(MGraph *G,int k)
{以vk為源點對用鄰接矩陣表示的圖G進行廣度優先搜索
int i,j;
CirQueue Q;
InitQueue(&Q);
printf("visit vertex:%c",G->vexs[k]); //訪問源點vk
visited[k]=TRUE;
EnQueue(&Q,k);
while(!QueueEmpty(&Q)){
i=DeQueue(&Q); //vi出隊
for(j=0;j<G->n;j++)//依次搜索vi的鄰接點vj
if(G->edges[i][j]==1&&!visited[j]){//vi未訪問
printf("visit vertex:%c",G->vexs[j]);//訪問vi
visited[j]=TRUE;
EnQueue(&Q,j);//訪問過的vi人隊
}
}//endwhile
}//BFSM
『伍』 深度優先搜索演算法
這些書上都有很多例子的啊,你可以好好看看。
樹的特點,是兩個結點間都存著一個路徑,從每個結點都可以訪問到其它的結點。
一般對於樹進行深度優先演算法,是從根開始,依次訪問當前結點相鄰的一個結點。按深度遍歷,對於每一個結點都不重復的訪問到,直到所有結點被訪問。
如二叉樹,可以以先根遍歷來進行。當達到分枝結點沒有所要搜索的結果時,回溯到上一層結點,繼續選擇相鄰的路徑進行搜索,一直窮舉到結束,如果沒有找到,則是無解。
演算法很多,代碼就不寫了。思路明白了,怎麼寫都行。
『陸』 試擴充深度優先搜索演算法,詳細代碼
據說還是自己考慮好的,,,是吧??
『柒』 深度優先搜索演算法解釋下
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。是沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。屬於盲目搜索。深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。