1.安裝源碼編譯環境(配置gcc),在ubuntu安裝完成已經有gcc(gcc是由GNU之父Stallman所開發的linux下的編譯器,全稱為GNU Compiler Collection, 目前可以編譯的語言包括:C, C++, Objective-C, Fortran, java, and Ada.),但是gcc還不能編譯文件,因為缺少一些頭文件.那麼我們就要來配置這些頭文件。在這里我們需要安裝build-essential這個軟體包,安裝了這個包會自動安裝上g++,libc6-dev,linux-libc-dev,libstdc++6-4.1-dev等一些必須的軟體和頭文件的庫。安裝build-essential,你可以在新立得搜索然後安裝或者在終端里輸入:
sudo apt-get install build-essential
2.除了編輯器之外,我們還需要文本編輯器來編寫程序源碼,Ubuntu中其實已自帶編輯器,但是目前較為著名而且流行的vi / vim 編輯器可以通過在Ubuntu的軟體中心下載,或是在終端輸入指令下載,指令如下:
sudo apt-get install vim-full
3.解壓包:arm-linux-gcc-3.4.5-glibc-2.3.6.tar.bz2,(註:不同文件包類型,指令有區別,如bz2 -xf)如下指令:
sudo tar -xf arm-linux-gcc-3.4.5-glibc-2.3.6.tar.bz2 OR sudo tar -xf arm-linux-gcc-3.4.6-glibc-2.3.6.tgz -C /work/
我的Ubuntu使用第二個指令解壓後解壓包放在了work目錄下。
4.修改環境變數,把交叉編譯器的路徑加入到PATH:方法一:修改/etc/bash.bashrc文件(此文件只對當前用戶適用),指令如下:
sudo gedit /etc/bash.bashrc
然後在文件的末尾空白處加入一下代碼:
if [ -d /work/gcc-3.4.6-glibc-2.3.6 ] ; then
PATH=/work/gcc-3.4.6-glibc-2.3.6/arm-linux/bin:"${PATH}"
fi
即完成路徑的添加。
5.使新的環境變數生效,不用重啟電腦。輸入下面指令:
source /etc/bash.bashrc
6.檢查是否將路徑加入到PATH。輸入下面指令:
echo $PATH
若顯示的內容中含有:/usr/local/arm/4.3.2/bin 說明已經將交叉編譯器的路徑加入PATH。至此,交叉編譯環境安裝完成。
7. 測試是否安裝成功,下面的命令會顯示arm-linux-gcc信息和版本。
B. 如何交叉編譯開源庫
所謂的搭建交叉編譯環境,即安裝、配置交叉編譯工具鏈。在該環境下編譯出嵌入式Linux系統所需的操作系統、應用程序等,然後再上傳到目標機上。
交叉編譯工具鏈是為了編譯、鏈接、處理和調試跨平台體系結構的程序代碼。對於交叉開發的工具鏈來說,在文件名稱上加了一個前綴,用來區別本地的工具鏈。例如,arm-linux-表示是對arm的交叉編譯工具鏈;arm-linux-gcc表示是使用gcc的編譯器。除了體系結構相關的編譯選項以外,其使用方法與Linux主機上的gcc相同,所以Linux編程技術對於嵌入式同樣適用。不過,並不是任何一個版本拿來都能用,各種軟體包往往存在版本匹配問題。例如,編譯內核時需要使用arm-linux-gcc-4.3.3版本的交叉編譯工具鏈,而使用arm-linux-gcc-3.4.1的交叉編譯工具鏈,則會導致編譯失敗。
那麼gcc和arm-linux-gcc的區別是什麼呢?區別就是gcc是linux下的C語言編譯器,編譯出來的程序在本地執行,而arm-linux-gcc用來在linux下跨平台的C語言編譯器,編譯出來的程序在目標機(如ARM平台)上執行,嵌入式開發應使用嵌入式交叉編譯工具鏈。
工具/原料
電腦系統:win7系統。虛擬機系統:workstation6.5 。虛擬機安裝的linux版本:fedora9.0。內核:linux2.6.25 。
方法/步驟
1
我使用的交叉編譯工具鏈是arm-linux-gcc-4.4.3,把它放在linux系統的路徑是圖一
2
在linux系統的路徑/home/song/share下放了交叉編譯工具鏈arm-linux-gcc-4.4.3的壓縮包,另一個版本的不用。有的人可能會問到怎麼把這個壓縮包弄到虛擬機的linux的系統的,我是通過samba服務從主機復制到虛擬機的,這里的share文件夾就是我samba伺服器的工作目錄,多了不說,這不是重點。
然後通過命令mkdir embedded 建立一個arm-linux-gcc的安裝目錄,如圖二所示。當然安裝路徑和目錄名稱「embedded」可以依自己的喜好而定。
步驟閱讀
然後通過命令將share文件夾下的arm-linux-gcc-4.4.3.tar.gz復制到這里的embedded文件夾下, 當然這里你也可以不進行這一步我這是為了方便以後管理,將arm-linux-gcc安裝到embedded文件夾下,方便以後尋找。
然後使用tar命令:tar zxvf arm-gcc-4.4.3.tar.gz將embedded文件夾下的arm-linux-gcc-4.4.3.tar.gz解壓縮安裝到當前目錄下
執行完解壓縮命令,就已經將交叉編譯工具鏈arm-linux-gcc-4.4.3安裝到linux系統上了,這里默認安裝到了圖六所示的路徑上。
接下來配置系統環境變數,把交叉編譯工具鏈的路徑添加到環境變數PATH中去,這樣就可以在任何目錄下使用這些工具。 vi /etc/profile 編輯profile文件,添加環境變數。
在profile中的位置處,添加圖八所示的紅線標注的一行,路徑就是圖六中的紅線標注的路徑後面加上/4.4.3/bin。
圖八中的路徑一定是你自己的安裝路徑,可以使用pwd命令查找一下那個bin目錄的路徑。添加完路徑後,保存退出。接下來使用命令:source /etc/profile,是修改後的profile文件生效,如圖九所示。
然後,使用命令:arm-linux-gcc -v查看當前交叉編譯鏈工具的版本信息,如圖九中的紅線標注第③行所示。很明顯 可以看到,如果不執行第②步,則查看版本信息不成功。
然後驗證交叉編譯工具鏈是否安裝成功並且可以使用,如圖九所示,隨便找一個目錄編輯一個hello源代碼。
編輯好hello.c文件後,保存退出。然後使用交叉編譯器對hello.c進行編譯,並生成可執行文件hello
這里生成的hello文件並不能像gcc編譯出來的文件那樣直接使用「./hello」命令執行並顯示內容 因為它是一個二進制文件,只能下載到開發板上執行!
至此,搭建交叉編譯環境步驟結束。
C. gcc交叉編譯怎麼找頭文件及lib庫的
是在specs裡面讀取的路徑信息。
命令行中鍵入 gcc -v
Reading specs from /usr/lib/gcc/i686-pc-cygwin/3.4.4/specs
Configured with: /usr/build/package/orig/test.respin/gcc-3.4.4-3/configure --ver
bose --prefix=/usr --exec-prefix=/usr --sysconfdir=/etc --libdir=/usr/lib --libe
xecdir=/usr/lib --mandir=/usr/share/man --infodir=/usr/share/info --enable-langu
ages=c,ada,c++,d,f77,pascal,java,objc --enable-nls --without-included-gettext --
enable-version-specific-runtime-libs --without-x --enable-libgcj --disable-java-
awt --with-system-zlib --enable-interpreter --disable-libgcj-debug --enable-thre
ads=posix --enable-java-gc=boehm --disable-win32-registry --enable-sjlj-exceptio
ns --enable-hash-synchronization --enable-libstdcxx-debug
Thread model: posix
gcc version 3.4.4 (cygming special, gdc 0.12, using dmd 0.125)
注意「--prefix=/usr」 以及「--libdir=/usr/lib 」
表示gcc ld as 等可執行文件安裝在/usr/bin,而libc.a 等文件是在/usr/lib中。
解壓縮交叉編譯器時,也是要解壓縮在在--prefix 指定的目錄下。
比如 下載了arm-linux 的交叉編譯器cross-3.3.2.tar.bz2,解壓縮之後,運行 arm-linux-gcc -v
得到 --prefix=/usr/local/arm。那麼就要把 bin lib 等所有的文件和文件夾到/usr/local/arm目錄下。
否則到時候運行arm-linux-gcc hello.c會提示找不到stdio.h 或者 lib.so.6 等
HOWTO Use the GCC specs file
About Specs file
The "gcc" program invoked by users is a convenient front-end driver executable which will invoke other programs in the background such as cc1, as or ld to do its work according to the command line parameter given. A specs file is plain text used to control the default behavior for the "gcc" front-end. The specs file is usually built-in but for flexibility purposes, it can be overridden with an external version.
Basic Specs file modifications
CC will proce a specs file via the following command.
gcc -mpspecs > specs
You may use a text editor of your choice to inspect it. It may be confusing at first, but there are many places of interest. To use the specs file, invoke gcc with -specs= or place it at "/mingw/lib/gcc/mingw32//specs" to make GCC use it by default, where refers to the GCC version installed.
Adding include directories to the search path
& #160;he *cpp: section should be modified. It contains the following by default:
*cpp:
%{posix:-D_POSIX_SOURCE} %{mthreads:-D_MT}
If "z:\libx\include" needs to be added to the GCC includes search path, it should be changed to the following
*cpp:
%{posix:-D_POSIX_SOURCE} %{mthreads:-D_MT} -I/z/libx/include
Adding lib directories to the search path
& #160;he *link_libgcc: section should be modified. It contains the following by default:
*link_libgcc:
%D
& #160;f "z:\libx\lib" needs to be added to the GCC library search path, it should be changed to the following
*link_libgcc:
%D -L/z/libx/lib
D. arm-linux交叉編譯器的路徑設置問題,怎麼辦
編輯 /etc/bashrc
在最後面加上
set PATH='/arm/2.95.3/bin/':$PATH
export PATH
然後重新登錄一下,
echo $PATH
你就可以看到 /arm/2.95.3/bin/: 在最前面
打開
/mnt/hgfs/arm--fft/linux develop/vivi/vivi 下的 Makefile
查找裡面的 ARCH ?=
把它改為 ARCH ?= arm
COROSS_COMPILE ?= arm-linux-
注意: "arm-linux-" 後面沒有空格哦
你再 make 一下,應該就可以啦
E. 如何使用CMake進行交叉編譯
cmake交叉編譯配置
很多時候,我們在開發的時候是面對嵌入式平台,因此由於資源的限制需要用到相關的交叉編譯。即在你host宿主機上要生成target目標機的程序。裡面牽扯到相關頭文件的切換和編譯器的選擇以及環境變數的改變等,我今天僅僅簡單介紹下相關CMake在面對交叉編譯的時候,需要做的一些准備工作。
CMake給交叉編譯預留了一個很好的變數CMAKE_TOOLCHAIN_FILE,它定義了一個文件的路徑,這個文件即toolChain,裡面set了一系列你需要改變的變數和屬性,包括C_COMPILER,CXX_COMPILER,如果用Qt的話需要更改QT_QMAKE_EXECUTABLE以及如果用BOOST的話需要更改的BOOST_ROOT(具體查看相關Findxxx.cmake裡面指定的路徑)。CMake為了不讓用戶每次交叉編譯都要重新輸入這些命令,因此它帶來toolChain機制,簡而言之就是一個cmake腳本,內嵌了你需要改變以及需要set的所有交叉環境的設置。
toolChain腳本中設置的幾個重要變數
1.CMAKE_SYSTEM_NAME:
即你目標機target所在的操作系統名稱,比如ARM或者Linux你就需要寫"Linux",如果Windows平台你就寫"Windows",如果你的嵌入式平台沒有相關OS你即需要寫成"Generic",只有當CMAKE_SYSTEM_NAME這個變數被設置了,CMake才認為此時正在交叉編譯,它會額外設置一個變數CMAKE_CROSSCOMPILING為TRUE.
2. CMAKE_C_COMPILER:
顧名思義,即C語言編譯器,這里可以將變數設置成完整路徑或者文件名,設置成完整路徑有一個好處就是CMake會去這個路徑下去尋找編譯相關的其他工具比如linker,binutils等,如果你寫的文件名帶有arm-elf等等前綴,CMake會識別到並且去尋找相關的交叉編譯器。
3. CMAKE_CXX_COMPILER:
同上,此時代表的是C++編譯器。
4. CMAKE_FIND_ROOT_PATH:
指定了一個或者多個優先於其他搜索路徑的搜索路徑。比如你設置了/opt/arm/,所有的Find_xxx.cmake都會優先根據這個路徑下的/usr/lib,/lib等進行查找,然後才會去你自己的/usr/lib和/lib進行查找,如果你有一些庫是不被包含在/opt/arm裡面的,你也可以顯示指定多個值給CMAKE_FIND_ROOT_PATH,比如
set(CMAKE_FIND_ROOT_PATH /opt/arm /opt/inst)
該變數能夠有效地重新定位在給定位置下進行搜索的根路徑。該變數默認為空。當使用交叉編譯時,該變數十分有用:用該變數指向目標環境的根目錄,然後CMake將會在那裡查找。
5. CMAKE_FIND_ROOT_PATH_MODE_PROGRAM:
對FIND_PROGRAM()起作用,有三種取值,NEVER,ONLY,BOTH,第一個表示不在你CMAKE_FIND_ROOT_PATH下進行查找,第二個表示只在這個路徑下查找,第三個表示先查找這個路徑,再查找全局路徑,對於這個變數來說,一般都是調用宿主機的程序,所以一般都設置成NEVER
6. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY:
對FIND_LIBRARY()起作用,表示在鏈接的時候的庫的相關選項,因此這里需要設置成ONLY來保證我們的庫是在交叉環境中找的.
7. CMAKE_FIND_ROOT_PATH_MODE_INCLUDE:
對FIND_PATH()和FIND_FILE()起作用,一般來說也是ONLY,如果你想改變,一般也是在相關的FIND命令中增加option來改變局部設置,有NO_CMAKE_FIND_ROOT_PATH,ONLY_CMAKE_FIND_ROOT_PATH,BOTH_CMAKE_FIND_ROOT_PATH
8. BOOST_ROOT:
對於需要boost庫的用戶來說,相關的boost庫路徑配置也需要設置,因此這里的路徑即ARM下的boost路徑,裡面有include和lib。
9. QT_QMAKE_EXECUTABLE:
對於Qt用戶來說,需要更改相關的qmake命令切換成嵌入式版本,因此這里需要指定成相應的qmake路徑(指定到qmake本身)
toolChain demo
# this is required
SET(CMAKE_SYSTEM_NAME Linux)
# specify the cross compiler
SET(CMAKE_C_COMPILER /opt/arm/usr/bin/ppc_74xx-gcc)
SET(CMAKE_CXX_COMPILER /opt/arm/usr/bin/ppc_74xx-g++)
# where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/arm/ppc_74xx /home/rickk/arm_inst)
# search for programs in the build host directories (not necessary)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
# for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
# configure Boost and Qt
SET(QT_QMAKE_EXECUTABLE /opt/qt-embedded/qmake)
SET(BOOST_ROOT /opt/boost_arm)
這樣就完成了相關toolChain的編寫,之後,你可以靈活的選擇到底採用宿主機版本還是開發機版本,之間的區別僅僅是一條-DCMAKE_TOOLCHAIN_FILE=./toolChain.cmake,更爽的是,如果你有很多程序需要做轉移,但目標平台是同一個,你僅僅需要寫一份toolChain放在一個地方,就可以給所有工程使用。
F. linux 交叉編譯器放什麼路徑
.bashrc在/root目錄下面,ls -a 可以看到的。 vi /root/.bashrc把這句話添進去,保存退出。然後source /root/.bashrc讓它立即生效,就Ok了。
G. 交叉編譯時候怎麼設置連接庫的搜索路徑
找不到libQtGui.so這個庫,添加環境變數LIBRARY_PATH=/opt/Qt4.7/lib試試另外你使是用arm-linux-gcc編譯程序,需要保證QT下的libQtGui.so庫也是用arm-linux-gcc編譯的,否則編譯鏈接會出問題
H. linux下用交叉編譯器編譯時,已經指定了庫的路徑跟庫的名字,可是還是報錯找不到庫。
看起來它不是個庫,倒像是個可執行程序
一般so都放在lib這樣的目錄下,你這個是bin,而且和它在一起的都是可執行程序,並且它沒有so後綴名。
I. 怎麼查看android編譯時候交叉編譯鏈工具位置
經常搞嵌入式開發的朋友對於交叉編譯環境應該並不陌生,說白了,就是一組運行在x86 PC機的編譯工具,可以讓你在PC機上編譯出目標平台(例如ARM)可識別的二進制文件。Android平台也提供了這樣的交叉編譯工具鏈,就放在Android的NDK開發包的toolchains目錄下,因此,我們的Makefile文件中,只需給出相應的編譯工具即可。
廢話就先說到這,直接上例子,我們目標是把下面這個math.c文件編譯成一個靜態庫文件:
#include <stdio.h>
int add( int a , int b ) {
return a+b;
}
你需要編寫一個Makefile文件,這里假設你的Android ndk被安裝在 /opt/android/ndk 目錄下,當然,你可以根據自己的實際情況修改Makefile中相關路徑的定義,Makefile文件示例如下:
# Makefile Written by ticktick
# Show how to cross-compile c/c++ code for android platform
.PHONY: clean
NDKROOT=/opt/android/ndk
PLATFORM=$(NDKROOT)/platforms/android-14/arch-arm
CROSS_COMPILE=$(NDKROOT)/toolchains/arm-linux-androideabi-4.6/prebuilt/linux-x86/bin/arm-linux-androideabi-
CC=$(CROSS_COMPILE)gcc
AR=$(CROSS_COMPILE)ar
LD=$(CROSS_COMPILE)ld
CFLAGS = -I$(PWD) -I$(PLATFORM)/usr/include -Wall -O2 -fPIC -DANDROID -DHAVE_PTHREAD -mfpu=neon -mfloat-abi=softfp
LDFLAGS =