導航:首頁 > 源碼編譯 > dstar演算法

dstar演算法

發布時間:2022-04-24 10:02:04

⑴ 搜索演算法中,A演算法A*演算法的區別(急)

a*演算法:a*(a-star)演算法是一種靜態路網中求解最短路徑最有效的直接搜索方法。估價值與實際值越接近,估價函數取得就越好
a*
(a-star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(alt,ch,hl等等),在線查詢效率是a*演算法的數千甚至上萬倍。
公式表示為:
f(n)=g(n)+h(n),
其中
f(n)
是從初始點經由節點n到目標點的估價函數,
g(n)
是在狀態空間中從初始節點到n節點的實際代價,
h(n)
是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:
估價值h(n)<=
n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行,
此時的搜索效率是最高的。
如果
估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。

⑵ A*演算法用於路徑規劃,有什麼缺點

缺點:A*演算法通過比較當前路徑柵格的8個鄰居的啟發式函數值F來逐步確定下一個路徑柵格,當存在多個最小值時A*演算法不能保證搜索的路徑最優。
A*演算法;A*(A-Star)演算法是一種靜態路網中求解最短路徑最有效的直接搜索方法。估價值與實際值越接近,估價函數取得就越好。A*[1] (A-Star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(ALT,CH,HL等等),在線查詢效率是A*演算法的數千甚至上萬倍。公式表示為: f(n)=g(n)+h(n),其中 f(n) 是從初始點經由節點n到目標點的估價函數,g(n) 是在狀態空間中從初始節點到n節點的實際代價,h(n) 是從n到目標節點最佳路徑的估計代價。保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行, 此時的搜索效率是最高的。如果 估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。

⑶ A*演算法的原理

A* (A-Star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(ALT,CH,HL等等),在線查詢效率是A*演算法的數千甚至上萬倍。
公式表示為: f(n)=g(n)+h(n),
其中 f(n) 是從初始點經由節點n到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n) 是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行, 此時的搜索效率是最高的。
如果 估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。

⑷ A*演算法的評估函數g(n)是如何定義的

您好,你的問題,我之前好像也遇到過,以下是我原來的解決思路和方法,希望能幫助到你,若有錯誤,還望見諒!A*演算法:A*(A-Star)演算法是一種靜態路網中求解最短路徑最有效的直接搜索方法。估價值與實際值越接近,估價函數取得就越好
A* (A-Star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(ALT,CH,HL等等),在線查詢效率是A*演算法的數千甚至上萬倍。
公式表示為: f(n)=g(n)+h(n),
其中 f(n) 是從初始點經由節點n到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n) 是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行, 此時的搜索效率是最高的。
如果 估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。非常感謝您的耐心觀看,如有幫助請採納,祝生活愉快!謝謝!

⑸ 從原點出發,遍歷50個點,再回到原點的最短路徑,求matlab程序

據 Drew 所知最短路經演算法現在重要的應用有計算機網路路由演算法,機器人探路,交通路線導航,人工智慧,游戲設計等等。美國火星探測器核心的尋路演算法就是採用的D*(D Star)演算法。

最短路經計算分靜態最短路計算和動態最短路計算。

靜態路徑最短路徑演算法是外界環境不變,計算最短路徑。主要有Dijkstra演算法,A*(A Star)演算法。

動態路徑最短路是外界環境不斷發生變化,即不能計算預測的情況下計算最短路。如在游戲中敵人或障礙物不斷移動的情況下。典型的有D*演算法。這是Drew程序實現的10000個節點的隨機路網三條互不相交最短路真實路網計算K條路徑示例:節點5696到節點3006,三條最快速路,可以看出路徑基本上走環線或主幹路。黑線為第一條,蘭線為第二條,紅線為第三條。約束條件系數為1.2。共享部分路段。 顯示計算部分完全由Drew自己開發的程序完成。 參見 K條路演算法測試程序

Dijkstra演算法求最短路徑:

Dijkstra演算法是典型最短路演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法能得出最短路徑的最優解,但由於它遍歷計算的節點很多,所以效率低。

Dijkstra演算法是很有代表性的最短路演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。

Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表方式,Drew為了和下面要介紹的 A* 演算法和 D* 演算法表述一致,這里均採用OPEN,CLOSE表的方式。

大概過程:
創建兩個表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
1. 訪問路網中里起始點最近且沒有被檢查過的點,把這個點放入OPEN組中等待檢查。
2. 從OPEN表中找出距起始點最近的點,找出這個點的所有子節點,把這個點放到CLOSE表中。
3. 遍歷考察這個點的子節點。求出這些子節點距起始點的距離值,放子節點到OPEN表中。
4. 重復2,3,步。直到OPEN表為空,或找到目標點。

這是在drew 程序中4000個節點的隨機路網上Dijkstra演算法搜索最短路的演示,黑色圓圈表示經過遍歷計算過的點由圖中可以看到Dijkstra演算法從起始點開始向周圍層層計算擴展,在計算大量節點後,到達目標點。所以速度慢效率低。

提高Dijkstra搜索速度的方法很多,據Drew所知,常用的有數據結構採用Binary heap的方法,和用Dijkstra從起始點和終點同時搜索的方法。

推薦網頁:http://www.cs.ecnu.e.cn/assist/js04/ZJS045/ZJS04505/zjs045050a.htm

簡明扼要介紹Dijkstra演算法,有圖解顯示和源碼下載。

A*(A Star)演算法:啟發式(heuristic)演算法

A*(A-Star)演算法是一種靜態路網中求解最短路最有效的方法。

公式表示為: f(n)=g(n)+h(n),
其中f(n) 是節點n從初始點到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n)是從n到目標節點最佳路徑的估計代價。

保證找到最短路徑(最優解的)條件,關鍵在於估價函數h(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。
如果 估價值>實際值, 搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
估價值與實際值越接近,估價函數取得就越好。
例如對於幾何路網來說,可以取兩節點間歐幾理德距離(直線距離)做為估價值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));這樣估價函數f在g值一定的情況下,會或多或少的受估價值h的制約,節點距目標點近,h值小,f值相對就小,能保證最短路的搜索向終點的方向進行。明顯優於Dijstra演算法的毫無無方向的向四周搜索。

conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible

主要搜索過程:
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
遍歷當前節點的各個節點,將n節點放入CLOSE中,取n節點的子節點X,->算X的估價值->
While(OPEN!=NULL)
{
從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
else
{
if(X in OPEN) 比較兩個X的估價值f //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於OPEN表的估價值 )
更新OPEN表中的估價值; //取最小路徑的估價值

if(X in CLOSE) 比較兩個X的估價值 //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於CLOSE表的估價值 )
更新CLOSE表中的估價值; 把X節點放入OPEN //取最小路徑的估價值

if(X not in both)
求X的估價值;
並將X插入OPEN表中;//還沒有排序
}

將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
}

⑹ 請問在3D max 中什麼叫采樣

樓主指的應該是3dsmax的super sample(超級采樣)吧。那我先說說采樣的道理。

采樣是涉及到渲染的一個術語,就是對像素來取樣來進行綜合運算。簡單理解采樣率越高渲染質量就越好。
但采樣有很多種類,在max和很多渲染器里都有出現,有的是針對鋸齒采樣,有的是對投影采樣,有全局光采樣,有光線追蹤采樣等等,分工不同但目的都是為了提升渲染的精度。

下面說說超級采樣。
普通的掃描線渲染有時候會發現畫面里有些毛邊,橫紋或者鋸齒,要消除這些缺陷就得啟動超級采樣,超級采樣是單純對像素進行的一個加強演算法,精度可以細小到1/100個像素。啟動超級采樣後,上面提到的問題基本就得以解決,不過渲染速度也是大大地增加了,所以超級采樣只在有問題的時候才敢使用。

只是到了max3之後又增加了幾個采樣類型,不過這些都是專業級的演算法,對用基礎用戶來說不用去關心。關於詳細的解釋,你在渲染面板選擇采樣方法的時候,就能看見下面列出文字解釋演算法。比如max 2.5 star的演算法就是每5個像素進行一次加強運算,這5個像素排列是呈五角星的形狀,當然比預設的正方形演算法要更進一步,也基本適合所有情形;Hammersley(這是個人名)就是4到40個采樣點,X方向的像素是連續的,Y方向是隨機,其餘由程序來判斷分配,既然x方向連續,那麼就特別適合遠景出現鋸齒的情況,比如瓷磚地面延伸到遠處鋸齒就越來越明顯,這時可以考慮這個演算法。還有個blur的簡直就是個模糊濾鏡,要模糊都去後期軟體處理了誰在這里折騰還浪費時間。

其實本來需要超級采樣的情況就很少,況且這幾種演算法肉眼難以辨別差異,所以基本要用的話,使用最早的max 2.5 star的演算法就足夠了,提供這么多選項還真是讓人頭昏呢。

⑺ LOL 中的KDA怎麼算出來的

KDA的演算法是(殺+助)/ 死 X 3,而不是「(K+A)/D 正常值為3」。

在游戲DOTA,LOL以及hero of newerth 里,KDA指的是KILL DEATH ASSIST(殺人率,死亡率,支援率),平常以KD RATIO(KDR)表示殺人率和死亡率的對比。

(7)dstar演算法擴展閱讀:

《英雄聯盟》(簡稱LOL)是由美國拳頭游戲(Riot Games)開發、中國大陸地區騰訊游戲代理運營的英雄對戰MOBA競技網游。

游戲里擁有數百個個性英雄,並擁有排位系統、符文系統等特色養成系統。

《英雄聯盟》還致力於推動全球電子競技的發展,除了聯動各賽區發展職業聯賽、打造電競體系之外,每年還會舉辦「季中冠軍賽」「全球總決賽」「All Star全明星賽」三大世界級賽事,獲得了億萬玩家的喜愛,形成了自己獨有的電子競技文化。

⑻ 最短路徑弗洛德演算法怎麼理解

Dijkstra演算法,A*演算法和D*演算法

Dijkstra演算法是典型最短路演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法能得出最短路徑的最優解,但由於它遍歷計算的節點很多,所以效率低。

Dijkstra演算法是很有代表性的最短路演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。

Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表方式,Drew為了和下面要介紹的 A* 演算法和 D* 演算法表述一致,這里均採用OPEN,CLOSE表的方式。

大概過程:
創建兩個表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
1. 訪問路網中里起始點最近且沒有被檢查過的點,把這個點放入OPEN組中等待檢查。
2. 從OPEN表中找出距起始點最近的點,找出這個點的所有子節點,把這個點放到CLOSE表中。
3. 遍歷考察這個點的子節點。求出這些子節點距起始點的距離值,放子節點到OPEN表中。
4. 重復2,3,步。直到OPEN表為空,或找到目標點。

提高Dijkstra搜索速度的方法很多,常用的有數據結構採用Binary heap的方法,和用Dijkstra從起始點和終點同時搜索的方法。

A*(A-Star)演算法是一種啟發式演算法,是靜態路網中求解最短路最有效的方法。

公式表示為: f(n)=g(n)+h(n),
其中f(n) 是節點n從初始點到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n)是從n到目標節點最佳路徑的估計代價。

保證找到最短路徑(最優解的)條件,關鍵在於估價函數h(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。
如果 估價值>實際值, 搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
估價值與實際值越接近,估價函數取得就越好。
例如對於幾何路網來說,可以取兩節點間歐幾理德距離(直線距離)做為估價值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));這樣估價函數f在g值一定的情況下,會或多或少的受估價值h的制約,節點距目標點近,h值小,f值相對就小,能保證最短路的搜索向終點的方向進行。明顯優於Dijstra演算法的毫無無方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索過程:
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
遍歷當前節點的各個節點,將n節點放入CLOSE中,取n節點的子節點X,->算X的估價值->
While(OPEN!=NULL)
{
從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
else
{
if(X in OPEN) 比較兩個X的估價值f //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於OPEN表的估價值 )
更新OPEN表中的估價值; //取最小路徑的估價值
if(X in CLOSE) 比較兩個X的估價值 //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於CLOSE表的估價值 )
更新CLOSE表中的估價值; 把X節點放入OPEN //取最小路徑的估價值
if(X not in both)
求X的估價值;
並將X插入OPEN表中; //還沒有排序
}
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
}

A*演算法和Dijistra演算法的區別在於有無估價值,Dijistra演算法相當於A*演算法中估價值為0的情況。

動態路網,最短路演算法 D*A* 在靜態路網中非常有效(very efficient for static worlds),但不適於在動態路網,環境如權重等不斷變化的動態環境下。

D*是動態A*(D-Star,Dynamic A*) 卡內及梅隆機器人中心的Stentz在1994和1995年兩篇文章提出,主要用於機器人探路。是火星探測器採用的尋路演算法。

主要方法:
1.先用Dijstra演算法從目標節點G向起始節點搜索。儲存路網中目標點到各個節點的最短路和該位置到目標點的實際值h,k(k為所有變化h之中最小的值,當前為k=h。每個節點包含上一節點到目標點的最短路信息1(2),2(5),5(4),4(7)。則1到4的最短路為1-2-5-4。
原OPEN和CLOSE中節點信息保存。
2.機器人沿最短路開始移動,在移動的下一節點沒有變化時,無需計算,利用上一步Dijstra計算出的最短路信息從出發點向後追述即可,當在Y點探測到下一節點X狀態發生改變,如堵塞。機器人首先調整自己在當前位置Y到目標點G的實際值h(Y),h(Y)=X到Y的新權值c(X,Y)+X的原實際值h(X).X為下一節點(到目標點方向Y->X->G),Y是當前點。k值取h值變化前後的最小。
3.用A*或其它演算法計算,這里假設用A*演算法,遍歷Y的子節點,點放入CLOSE,調整Y的子節點a的h值,h(a)=h(Y)+Y到子節點a的權重C(Y,a),比較a點是否存在於OPEN和CLOSE中,方法如下:
while()
{
從OPEN表中取k值最小的節點Y;
遍歷Y的子節點a,計算a的h值 h(a)=h(Y)+Y到子節點a的權重C(Y,a)
{
if(a in OPEN) 比較兩個a的h值
if( a的h值小於OPEN表a的h值 )
{ 更新OPEN表中a的h值;k值取最小的h值
有未受影響的最短路經存在
break;
}
if(a in CLOSE) 比較兩個a的h值 //注意是同一個節點的兩個不同路徑的估價值
if( a的h值小於CLOSE表的h值 )
{
更新CLOSE表中a的h值; k值取最小的h值;將a節點放入OPEN表
有未受影響的最短路經存在
break;
}
if(a not in both)
將a插入OPEN表中; //還沒有排序
}
放Y到CLOSE表;
OPEN表比較k值大小進行排序;
}
機器人利用第一步Dijstra計算出的最短路信息從a點到目標點的最短路經進行。

D*演算法在動態環境中尋路非常有效,向目標點移動中,只檢查最短路徑上下一節點或臨近節點的變化情況,如機器人尋路等情況。對於距離遠的最短路徑上發生的變化,則感覺不太適用。

⑼ D*演算法的介紹

D*是動態A*(D-Star,Dynamic A*) 卡內及梅隆機器人中心的Stentz在1994和1995年兩篇文章提出,主要用於機器人探路。是火星探測器採用的尋路演算法。

閱讀全文

與dstar演算法相關的資料

熱點內容
命令輸入框 瀏覽:890
冰箱壓縮機發燙噪音 瀏覽:85
單片機棧溢出符號 瀏覽:330
命令與征服修改器怎麼用 瀏覽:485
什麼app比較費錢 瀏覽:832
為什麼同一個app的功能不一樣 瀏覽:232
小型工作室用什麼伺服器好 瀏覽:995
程序員的興趣 瀏覽:413
華為伺服器有什麼好 瀏覽:701
程序員和測試之間的關系 瀏覽:945
加密蚊帳什麼意思 瀏覽:151
javalistclear 瀏覽:607
哪個app上民宿多靠譜 瀏覽:828
重慶伺服器租用哪裡有雲伺服器 瀏覽:453
土星模擬器文件夾 瀏覽:902
文件夾文件袋文件盒 瀏覽:695
雲伺服器打開f8指令 瀏覽:243
盈透證券加密幣 瀏覽:72
阿里雲伺服器初始密碼怎麼修改 瀏覽:266
伺服器怎麼設定公用網路 瀏覽:99