導航:首頁 > 源碼編譯 > 當前加密演算法研究方向

當前加密演算法研究方向

發布時間:2022-04-26 12:01:56

① 目前最新加密演算法是哪類及其演算法原理,加密演算法的發展方向

這個太強了 相信沒人能給你答案

② 數據加密技術的研究進展

第60屆Intel ISEF英特爾國際科學與工程大獎賽將於2009年5月10日到15日在美國內華達州雷諾市舉行。自2000年開始,中國科學技術協會在英特爾(中國)有限公司的贊助下,組織中國學生參加一年一度在美國舉行的英特爾國際科學與工程大獎賽(Intel ISEF)總決賽。在過去的9年裡,共計208名中國大陸學生參與了137個項目的競賽並贏得了142個獎項,其中包括2004 年獲得的一項Intel ISEF頂級獎項 「英特爾基金會青少年科學精英獎」。在2008年的大賽上,來自北京,上海,廣東,福建,四川,吉林,遼寧,雲南,天津和山西的23名少年英才,帶著17個項目參與角逐,最終取得了14個獎項,包括一個工程學科的特等獎和一等獎。英特爾於2007、2008年兩次邀請了中國教育部代表團觀摩Intel ISEF,並參加教育家論壇,與全球教育家共同探討科學教育和青少年創新人才培養的問題。以下是往屆中國獲獎參賽項目介紹:
在信息技術飛速發展的今天,數據加密越來越受到重視。當下,加密技術已經十分成熟,然而大部分加密演算法要靠復雜的數學方法保證加密的強度。受到玩具魔方的啟發後,我研發出一種用魔方變換提供加密強度的演算法——魔方流密碼演算法。該演算法的不同之處在於:演算法的主體是一個包含很多數據的虛擬魔方,通過魔方變換改變其中的數據,在每輪變換結束後,會得到全新的數據,即為當前加(解)密運算的密鑰。
對該演算法的進一步實驗發現:主密鑰長度不影響執行速度;密鑰流的偽隨機性良好;密鑰生成過程有很好的混亂和擴散。而且,演算法的C語言實現程序資源佔用很少,速度較快。演算法的多項指標都達到了實際應用的標准。

③ 目前常用的加密解密演算法有哪些

加密演算法

加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。

對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。

不對稱加密演算法不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。

不可逆加密演算法 不可逆加密演算法的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。

加密技術

加密演算法是加密技術的基礎,任何一種成熟的加密技術都是建立多種加密演算法組合,或者加密演算法和其他應用軟體有機結合的基礎之上的。下面我們介紹幾種在計算機網路應用領域廣泛應用的加密技術。

非否認(Non-repudiation)技術 該技術的核心是不對稱加密演算法的公鑰技術,通過產生一個與用戶認證數據有關的數字簽名來完成。當用戶執行某一交易時,這種簽名能夠保證用戶今後無法否認該交易發生的事實。由於非否認技術的操作過程簡單,而且直接包含在用戶的某類正常的電子交易中,因而成為當前用戶進行電子商務、取得商務信任的重要保證。

PGP(Pretty Good Privacy)技術 PGP技術是一個基於不對稱加密演算法RSA公鑰體系的郵件加密技術,也是一種操作簡單、使用方便、普及程度較高的加密軟體。PGP技術不但可以對電子郵件加密,防止非授權者閱讀信件;還能對電子郵件附加數字簽名,使收信人能明確了解發信人的真實身份;也可以在不需要通過任何保密渠道傳遞密鑰的情況下,使人們安全地進行保密通信。PGP技術創造性地把RSA不對稱加密演算法的方便性和傳統加密體系結合起來,在數字簽名和密鑰認證管理機制方面採用了無縫結合的巧妙設計,使其幾乎成為最為流行的公鑰加密軟體包。

數字簽名(Digital Signature)技術 數字簽名技術是不對稱加密演算法的典型應用。數字簽名的應用過程是,數據源發送方使用自己的私鑰對數據校驗和或其他與數據內容有關的變數進行加密處理,完成對數據的合法「簽名」,數據接收方則利用對方的公鑰來解讀收到的「數字簽名」,並將解讀結果用於對數據完整性的檢驗,以確認簽名的合法性。數字簽名技術是在網路系統虛擬環境中確認身份的重要技術,完全可以代替現實過程中的「親筆簽字」,在技術和法律上有保證。在公鑰與私鑰管理方面,數字簽名應用與加密郵件PGP技術正好相反。在數字簽名應用中,發送者的公鑰可以很方便地得到,但他的私鑰則需要嚴格保密。

PKI(Public Key Infrastructure)技術 PKI技術是一種以不對稱加密技術為核心、可以為網路提供安全服務的公鑰基礎設施。PKI技術最初主要應用在Internet環境中,為復雜的互聯網系統提供統一的身份認證、數據加密和完整性保障機制。由於PKI技術在網路安全領域所表現出的巨大優勢,因而受到銀行、證券、政府等核心應用系統的青睞。PKI技術既是信息安全技術的核心,也是電子商務的關鍵和基礎技術。由於通過網路進行的電子商務、電子政務等活動缺少物理接觸,因而使得利用電子方式驗證信任關系變得至關重要,PKI技術恰好能夠有效解決電子商務應用中的機密性、真實性、完整性、不可否認性和存取控制等安全問題。一個實用的PKI體系還必須充分考慮互操作性和可擴展性。PKI體系所包含的認證中心(CA)、注冊中心(RA)、策略管理、密鑰與證書管理、密鑰備份與恢復、撤銷系統等功能模塊應該有機地結合在一起。

加密的未來趨勢

盡管雙鑰密碼體制比單鑰密碼體制更為可靠,但由於計算過於復雜,雙鑰密碼體制在進行大信息量通信時,加密速率僅為單鑰體制的1/100,甚至是 1/1000。正是由於不同體制的加密演算法各有所長,所以在今後相當長的一段時期內,各類加密體制將會共同發展。而在由IBM等公司於1996年聯合推出的用於電子商務的協議標准SET(Secure Electronic Transaction)中和1992年由多國聯合開發的PGP技術中,均採用了包含單鑰密碼、雙鑰密碼、單向雜湊演算法和隨機數生成演算法在內的混合密碼系統的動向來看,這似乎從一個側面展示了今後密碼技術應用的未來。

在單鑰密碼領域,一次一密被認為是最為可靠的機制,但是由於流密碼體制中的密鑰流生成器在演算法上未能突破有限循環,故一直未被廣泛應用。如果找到一個在演算法上接近無限循環的密鑰流生成器,該體制將會有一個質的飛躍。近年來,混沌學理論的研究給在這一方向產生突破帶來了曙光。此外,充滿生氣的量子密碼被認為是一個潛在的發展方向,因為它是基於光學和量子力學理論的。該理論對於在光纖通信中加強信息安全、對付擁有量子計算能力的破譯無疑是一種理想的解決方法。

由於電子商務等民用系統的應用需求,認證加密演算法也將有較大發展。此外,在傳統密碼體制中,還將會產生類似於IDEA這樣的新成員,新成員的一個主要特徵就是在演算法上有創新和突破,而不僅僅是對傳統演算法進行修正或改進。密碼學是一個正在不斷發展的年輕學科,任何未被認識的加/解密機制都有可能在其中佔有一席之地。

目前,對信息系統或電子郵件的安全問題,還沒有一個非常有效的解決方案,其主要原因是由於互聯網固有的異構性,沒有一個單一的信任機構可以滿足互聯網全程異構性的所有需要,也沒有一個單一的協議能夠適用於互聯網全程異構性的所有情況。解決的辦法只有依靠軟體代理了,即採用軟體代理來自動管理用戶所持有的證書(即用戶所屬的信任結構)以及用戶所有的行為。每當用戶要發送一則消息或一封電子郵件時,代理就會自動與對方的代理協商,找出一個共同信任的機構或一個通用協議來進行通信。在互聯網環境中,下一代的安全信息系統會自動為用戶發送加密郵件,同樣當用戶要向某人發送電子郵件時,用戶的本地代理首先將與對方的代理交互,協商一個適合雙方的認證機構。當然,電子郵件也需要不同的技術支持,因為電子郵件不是端到端的通信,而是通過多個中間機構把電子郵件分程傳遞到各自的通信機器上,最後到達目的地。

④ 當前主流的加密技術有哪些

信息安全的重要性我們就不需再繼續強調了,無論企業還是個人,都對加密軟體的穩定性和安全性提出了更高的要求。可迎面而來更讓很多人困惑的是當加密軟體遍布市場令人應接不暇時,我們該如何去選擇。下面讓我們先來看一下目前主流的加密技術都有哪些。
1、
透明加密
透明加密技術是近年來針對企業文件保密需求應運而生的一種文件加密技術。所謂透明,是指對使用者來說是未知的。當使用者在打開或編輯指定文件時,系統將自動對未加密的文件進行加密,對已加密的文件自動解密。文件在硬碟上是密文,在內存中是明文。一旦離開使用環境,由於應用程序無法得到自動解密的服務而無法打開,從而起來保護文件內容的效果。
2、
驅動透明加密
驅動加密技術基於windows的文件系統(過濾)驅動(IFS)技術,工作在windows的內核層。我們在安裝計算機硬體時,經常要安裝其驅動,如列印機、U盤驅動。文件系統驅動就是把文件作為一種設備來處理的一種虛擬驅動。當應用程序對某種後綴文件進行操作時,文件驅動會監控到程序的操作,改變其操作方式,從而達到透明加密的效果。
3、
磁碟加密技術
磁碟加密技術相對於文檔加密技術,是在磁碟扇區級採用的加密技術,一般來說,該技術與上層應用無關,只針對特點的磁碟區域進行數據加密或者解密。
選擇加密軟體首先要考慮哪種加密技術更適合自己。其考核的標準是在進行各種大量文件操作後,文件是否會出現異常而無法打開,企業可以使用各種常規和非常規的方法來仔細測試;此外透明加密產品是否支持在網路文件系統下各種應用程序的正常工作也可以作為一個考核的要點。目前受關注度比較高的是透明加密技術,主要針對文檔信息安全,這也是因為辦公自動化的普及,企業內部的信息往來及重要機密都是以文檔的方式來存儲,因此透明加密方式更適合這種以文件安全防護為主的用戶,加密方式也更安全可靠。
我們知道office文檔可以通過設置密碼來進行加密,因此有些認為這樣便能很好地保護信息安全,但是他們沒有意識到現在黑客技術也在不斷的成熟,而且密碼加密有有機可乘的漏洞,並不能讓企業機密高枕無憂。因此安全度更高的透明加密更符合人們的需要,脫離使用環境時文件得不到解密服務而以密文的形式呈現,即使盜竊者拿到文件資料也是沒有辦法破解的,也就沒有任何利用價值。
加密技術是信息安全的核心技術,已經滲透到大部分安全產品之中。鵬宇成的免費加密軟體核心文件保護工具採用的是透明加密技術,通過伺服器端驗證來對文件進行正常的加密解密過程,並且集成外發文件控制系統保證對外發文件隨時可控,歡迎廣大用戶免費下載使用。

⑤ 為什麼公鑰密碼成為密碼學的研究方向

應該是非對稱密碼學成為密碼學的研究方向。
非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰(privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。 非對稱加密演算法實現機密信息交換的基本過程是:甲方生成一對密鑰並將其中的一把作為公用密鑰向其它方公開;得到該公用密鑰的乙方使用該密鑰對機密信息進行加密後再發送給甲方;甲方再用自己保存的另一把專用密鑰對加密後的信息進行解密。
另一方面,甲方可以使用乙方的公鑰對機密信息進行簽名後再發送給乙方;乙方再用自己的私匙對數據進行驗簽。
甲方只能用其專用密鑰解密由其公用密鑰加密後的任何信息。 非對稱加密演算法的保密性比較好,它消除了最終用戶交換密鑰的需要。
非對稱密碼體制的特點:演算法強度復雜、安全性依賴於演算法與密鑰但是由於其演算法復雜,而使得加密解密速度沒有對稱加密解密的速度快。對稱密碼體制中只有一種密鑰,並且是非公開的,如果要解密就得讓對方知道密鑰。所以保證其安全性就是保證密鑰的安全,而非對稱密鑰體制有兩種密鑰,其中一個是公開的,這樣就可以不需要像對稱密碼那樣傳輸對方的密鑰了。這樣安全性就大了很多。

⑥ 計算機密碼學中有哪些加密演算法

、信息加密概述

密碼學是一門古老而深奧的學科,它對一般人來說是莫生的,因為長期以來,它只在很少的范圍內,如軍事、外交、情報等部門使用。計算機密碼學是研究計算機信息加密、解密及其變換的科學,是數學和計算機的交義學科,也是一門新興的學科。隨著計算機網路和計算機通訊技術的發展,計算機密碼學得到前所未有的重視並迅速普及和發展起來。在國外,它已成為計算機安全主要的研究方向,也是計算機安全課程教學中的主要內容。

密碼是實現秘密通訊的主要手段,是隱蔽語言、文字、圖象的特種符號。凡是用特種符號按照通訊雙方約定的方法把電文的原形隱蔽起來,不為第三者所識別的通訊方式稱為密碼通訊。在計算機通訊中,採用密碼技術將信息隱蔽起來,再將隱蔽後的信息傳輸出去,使信息在傳輸過程中即使被竊取或載獲,竊取者也不能了解信息的內容,從而保證信息傳輸的安全。

任何一個加密系統至少包括下面四個組成部分:

( 1)、未加密的報文,也稱明文。

( 2)、加密後的報文,也稱密文。

( 3)、加密解密設備或演算法。

( 4)、加密解密的密鑰。

發送方用加密密鑰,通過加密設備或演算法,將信息加密後發送出去。接收方在收到密文後,用解密密鑰將密文解密,恢復為明文。如果傳輸中有人竊取,他只能得到無法理解的密文,從而對信息起到保密作用。

二、密碼的分類

從不同的角度根據不同的標准,可以把密碼分成若干類。

(一)按應用技術或歷史發展階段劃分:

1、手工密碼。以手工完成加密作業,或者以簡單器具輔助操作的密碼,叫作手工密碼。第一次世界大戰前主要是這種作業形式。

2、機械密碼。以機械密碼機或電動密碼機來完成加解密作業的密碼,叫作機械密碼。這種密碼從第一次世界大戰出現到第二次世界大戰中得到普遍應用。3、電子機內亂密碼。通過電子電路,以嚴格的程序進行邏輯運算,以少量制亂元素生產大量的加密亂數,因為其制亂是在加解密過程中完成的而不需預先製作,所以稱為電子機內亂密碼。從五十年代末期出現到七十年代廣泛應用。

4、計算機密碼,是以計算機軟體編程進行演算法加密為特點,適用於計算機數據保護和網路通訊等廣泛用途的密碼。

(二)按保密程度劃分:

1、理論上保密的密碼。不管獲取多少密文和有多大的計算能力,對明文始終不能得到唯一解的密碼,叫作理論上保密的密碼。也叫理論不可破的密碼。如客觀隨機一次一密的密碼就屬於這種。

2、實際上保密的密碼。在理論上可破,但在現有客觀條件下,無法通過計算來確定唯一解的密碼,叫作實際上保密的密碼。

3、不保密的密碼。在獲取一定數量的密文後可以得到唯一解的密碼,叫作不保密密碼。如早期單表代替密碼,後來的多表代替密碼,以及明文加少量密鑰等密碼,現在都成為不保密的密碼。

(三)、按密鑰方式劃分:

1、對稱式密碼。收發雙方使用相同密鑰的密碼,叫作對稱式密碼。傳統的密碼都屬此類。

2、非對稱式密碼。收發雙方使用不同密鑰的密碼,叫作非對稱式密碼。如現代密碼中的公共密鑰密碼就屬此類。

(四)按明文形態:

1、模擬型密碼。用以加密模擬信息。如對動態范圍之內,連續變化的語音信號加密的密碼,叫作模擬式密碼。

2、數字型密碼。用於加密數字信息。對兩個離散電平構成0、1二進制關系的電報信息加密的密碼叫作數字型密碼。

(五)按編制原理劃分:

可分為移位、代替和置換三種以及它們的組合形式。古今中外的密碼,不論其形態多麼繁雜,變化多麼巧妙,都是按照這三種基本原理編制出來的。移位、代替和置換這三種原理在密碼編制和使用中相互結合,靈活應用。

⑦ 對稱加密演算法的加密演算法主要有哪些

1、3DES演算法

3DES(即Triple DES)是DES向AES過渡的加密演算法(1999年,NIST將3-DES指定為過渡的加密標准),加密演算法,其具體實現如下:設Ek()和Dk()代表DES演算法的加密和解密過程,K代表DES演算法使用的密鑰,M代表明文,C代表密文,這樣:

3DES加密過程為:C=Ek3(Dk2(Ek1(M)))

3DES解密過程為:M=Dk1(EK2(Dk3(C)))

2、Blowfish演算法

BlowFish演算法用來加密64Bit長度的字元串。

BlowFish演算法使用兩個「盒」——unsignedlongpbox[18]和unsignedlongsbox[4,256]。

BlowFish演算法中,有一個核心加密函數:BF_En(後文詳細介紹)。該函數輸入64位信息,運算後,以64位密文的形式輸出。用BlowFish演算法加密信息,需要兩個過程:密鑰預處理和信息加密。

分別說明如下:

密鑰預處理:

BlowFish演算法的源密鑰——pbox和sbox是固定的。我們要加密一個信息,需要自己選擇一個key,用這個key對pbox和sbox進行變換,得到下一步信息加密所要用的key_pbox和key_sbox。具體的變化演算法如下:

1)用sbox填充key_sbox

2)用自己選擇的key8個一組地去異或pbox,用異或的結果填充key_pbox。key可以循環使用。

比如說:選的key是"abcdefghijklmn"。則異或過程為:

key_pbox[0]=pbox[0]abcdefgh;

key_pbox[1]=pbox[1]ijklmnab;

…………

…………

如此循環,直到key_pbox填充完畢。

3)用BF_En加密一個全0的64位信息,用輸出的結果替換key_pbox[0]和key_pbox[1],i=0;

4)用BF_En加密替換後的key_pbox,key_pbox[i+1],用輸出替代key_pbox[i+2]和key_pbox[i+3];

5)i+2,繼續第4步,直到key_pbox全部被替換;

6)用key_pbox[16]和key_pbox[17]做首次輸入(相當於上面的全0的輸入),用類似的方法,替換key_sbox信息加密。

信息加密就是用函數把待加密信息x分成32位的兩部分:xL,xRBF_En對輸入信息進行變換。

3、RC5演算法

RC5是種比較新的演算法,Rivest設計了RC5的一種特殊的實現方式,因此RC5演算法有一個面向字的結構:RC5-w/r/b,這里w是字長其值可以是16、32或64對於不同的字長明文和密文塊的分組長度為2w位,r是加密輪數,b是密鑰位元組長度。

(7)當前加密演算法研究方向擴展閱讀:

普遍而言,有3個獨立密鑰的3DES(密鑰選項1)的密鑰長度為168位(三個56位的DES密鑰),但由於中途相遇攻擊,它的有效安全性僅為112位。密鑰選項2將密鑰長度縮短到了112位,但該選項對特定的選擇明文攻擊和已知明文攻擊的強度較弱,因此NIST認定它只有80位的安全性。

對密鑰選項1的已知最佳攻擊需要約2組已知明文,2部,2次DES加密以及2位內存(該論文提到了時間和內存的其它分配方案)。

這在現在是不現實的,因此NIST認為密鑰選項1可以使用到2030年。若攻擊者試圖在一些可能的(而不是全部的)密鑰中找到正確的,有一種在內存效率上較高的攻擊方法可以用每個密鑰對應的少數選擇明文和約2次加密操作找到2個目標密鑰中的一個。

⑧ 常用的加密演算法有哪些

對稱密鑰加密

對稱密鑰加密 Symmetric Key Algorithm 又稱為對稱加密、私鑰加密、共享密鑰加密:這類演算法在加密和解密時使用相同的密鑰,或是使用兩個可以簡單的相互推算的密鑰,對稱加密的速度一般都很快。

閱讀全文

與當前加密演算法研究方向相關的資料

熱點內容
發信如何設置伺服器 瀏覽:77
源代碼查詢加密數字 瀏覽:605
附帶編譯 瀏覽:108
海康螢石雲app怎麼回放 瀏覽:404
寫一個編譯器怎麼寫 瀏覽:283
單片機蜂鳴器發聲原理 瀏覽:137
程序員那麼可愛陸離跳水是哪集 瀏覽:15
如何製作cdn伺服器 瀏覽:109
寫java加密程序 瀏覽:658
菜鳥數據分析pdf 瀏覽:291
單片機做實用東西 瀏覽:651
我的世界最強斗羅伺服器怎麼覺醒武魂 瀏覽:931
密友圈app怎麼切換用戶登錄 瀏覽:217
我把程序員當愛豆追 瀏覽:978
android判斷電話接通 瀏覽:646
大孔文件夾 瀏覽:785
反詐騙app在哪裡下載 瀏覽:527
軍工程序員面試視頻 瀏覽:813
質心演算法原理 瀏覽:423
163smtpphp 瀏覽:669