❶ 神經網路優缺點,
優點:
(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。
自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。
(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
缺點:
(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。
(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。
(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。
(4)理論和學習演算法還有待於進一步完善和提高。
(1)mlp演算法weka擴展閱讀:
神經網路發展趨勢
人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。
人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。
將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。
神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。
由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。
參考資料:網路-人工神經網路
❷ BP神經網路和感知器有什麼區別
1、發展背景不同:
感知器是Frank Rosenblatt在1957年所發明的一種人工神經網路,可以被視為一種最簡單形式的前饋式人工神經網路,是一種二元線性分類器。
而BP神經網路發展於20世紀80年代中期,David Runelhart。Geoffrey Hinton和Ronald W-llians、DavidParker等人分別獨立發現了誤差反向傳播演算法,簡稱BP,系統解決了多層神經網路隱含層連接權學習問題,並在數學上給出了完整推導。
2、結構不同:
BP網路是在輸入層與輸出層之間增加若干層(一層或多層)神經元,這些神經元稱為隱單元,它們與外界沒有直接的聯系,但其狀態的改變,則能影響輸入與輸出之間的關系,每一層可以有若干個節點。
感知器也被指為單層的人工神經網路,以區別於較復雜的多層感知器(Multilayer Perceptron)。 作為一種線性分類器,(單層)感知器可說是最簡單的前向人工神經網路形式。
3、演算法不同:
BP神經網路的計算過程由正向計算過程和反向計算過程組成。正向傳播過程,輸入模式從輸入層經隱單元層逐層處理,並轉向輸出層,每層神經元的狀態隻影響下一層神經元的狀態。感知器使用特徵向量來表示的前饋式人工神經網路,它是一種二元分類器,輸入直接經過權重關系轉換為輸出。
❸ BP神經網路中隱藏層節點個數怎麼確定最佳
1、神經網路演算法隱含層的選取
1.1 構造法
首先運用三種確定隱含層層數的方法得到三個隱含層層數,找到最小值和最大值,然後從最小值開始逐個驗證模型預測誤差,直到達到最大值。最後選取模型誤差最小的那個隱含層層數。該方法適用於雙隱含層網路。
1.2 刪除法
單隱含層網路非線性映射能力較弱,相同問題,為達到預定映射關系,隱層節點要多一些,以增加網路的可調參數,故適合運用刪除法。
1.3黃金分割法
演算法的主要思想:首先在[a,b]內尋找理想的隱含層節點數,這樣就充分保證了網路的逼近能力和泛化能力。為滿足高精度逼近的要求,再按照黃金分割原理拓展搜索區間,即得到區間[b,c](其中b=0.619*(c-a)+a),在區間[b,c]中搜索最優,則得到逼近能力更強的隱含層節點數,在實際應用根據要求,從中選取其一即可。
❹ 幾種常用的經典演算法
不太明白你所說的「人工智慧演算法」指的是什麼?
我覺得像決策樹、MLP、邏輯回歸都算是經典的人工智慧演算法吧
❺ R語言 數據挖掘 mlp參數問題
訓練的時候。test數據肯定是不參與,所以默認情況下是NULL,但是加入test數據過後,比如說我已經對train數據迭代了一次了,也就是遍歷了一次train的數據集合,這時候,可以測試一些test數據,看看這個模型在test上面的效果怎樣。收斂的MLP過程下,每一次迭代整個數據集過後,在test數據集上面的錯誤率應該是逐漸減少的。所以,我感覺test數據其實就是為了測試當前訓練好的模型的效果。
❻ 多層感知器MLP 的 BP 演算法是不是有監督學習!
多層感知器MLP 的 BP 演算法是有監督學習。
MLP學習中的BP演算法是由學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。正向傳播時,輸入樣本從輸入層傳入,經各隱層逐層處理後,傳向輸出層。若輸出層的實際輸出與期望的輸出(教師信號)不符,則轉入誤差的反向傳播階段。誤差反傳是將輸出誤差以某種形式通過隱層向輸入層逐層反傳,並將誤差分攤給各層的所有單元,從而獲得各層單元的誤差信號,此誤差信號即作為修正各單元權值的依據。這種信號正向傳播與誤差反向傳播的各層權值調整過程,是周而復始地進行的。權值不斷調整的過程,也就是網路的學習訓練過程。此過程一直進行到網路輸出的誤差減少到可接受的程度,或進行到預先設定的學習次數為止。
BP演算法介紹
❼ SPSS統計分析案例:多層感知器神經網路
SPSS統計分析案例:多層感知器神經網路
神經網路模型起源於對人類大腦思維模式的研究,它是一個非線性的數據建模工具, 由輸入層和輸出層、 一個或者多個隱藏層構成神經元,神經元之間的連接賦予相關的權重, 訓練學習演算法在迭代過程中不斷調整這些權重,從而使得預測誤差最小化並給出預測精度。
在SPSS神經網路中,包括多層感知器(MLP)和徑向基函數(RBF)兩種方法。
本期主要學習多層感知器神經網路,要把它講清楚是比較困難的,為了能直觀感受它的功能,首先以一個案例開始,最後再總結知識。
案例數據
該數據文件涉及某銀行在降低貸款拖欠率方面的舉措。該文件包含 700 位過去曾獲得貸款的客戶財務和人口統計信息。請使用這 700 名客戶的隨機樣本創建多層感知器神經網路模型。銀行需要此模型對新的客戶數據按高或低信用風險對他們進行分類。
第一次分析:菜單參數
要運行「多層感知器」分析,請從菜單中選擇:
分析 > 神經網路 > 多層感知器
如上圖所示,MLP主面板共有8個選項卡,至少需要設置其中"變數"、"分區"、"輸出"、"保存"、"導出"等5個選項卡,其他接受軟體默認設置。
▌ "變數"選項卡
將"是否拖欠"移入因變數框;
將分類變數"學歷"移入因子框,其他數值變數移入"協變數"框;
因各協變數量綱不同,選擇"標准化"處理;
▌ "分區"選項卡
在此之前,首先在 "轉換 > 隨機數生成器"菜單中設置隨機數固定種子為9191972(此處同SPSS官方文檔,用戶可以自由設定),因為"分區"選項卡中,要求對原始數據文件進行隨機化抽樣,將數據劃分為"訓練樣本"、"支持樣本"、"檢驗樣本"3個區塊,為了隨機過程可重復,所以此處指定固定種子一枚;
初次建模,先抽樣70%作為訓練樣本,用於完成自學習構建神經網路模型,30%作為支持樣本,用於評估所建立模型的性能,暫不分配檢驗樣本;
▌ "輸出"選項卡
勾選"描述"、"圖";
勾選"模型摘要"、"分類結果"、"預測實測圖";
勾選"個案處理摘要";
構成"自變數重要性分析";
這是第一次嘗試性的分析,主要參數設置如上,其他選項卡接受軟體默認設置,最後返回主面板,點擊"確定"按鈕,軟體開始執行MLP過程。
第一次分析產生的結果:
主要看重點的結果,依次如下:
個案處理摘要表,700個貸款客戶的記錄,其中480個客戶被分配到訓練樣本,佔比68.6%,另外220個客戶分配為支持樣本。
模型摘要表,首次構建的MLP神經網路模型其不正確預測百分比為12.7%,獨立的支持樣本檢驗模型的不正確百分比為20.9%,提示"超出最大時程數",模型非正常規則中止,顯示有過度學習的嫌疑。
判斷:首次建立的模型需要預防過度訓練。
第二次分析:菜單參數
首次分析懷疑訓練過度,所以第二次分析主要是新增檢驗樣本以及輸出最終的模型結果。
運行「多層感知器」分析,請從菜單中選擇:
分析 > 神經網路 > 多層感知器
▌ "分區"選項卡
對樣本進行重新分配,總700樣本,支持樣本繼續30%,訓練樣本由原來的70%縮減至50%,另外的20%分配給獨立的檢驗樣本空間;
▌ "保存"選項卡
保存每個因變數的預測值或類別;
保存每個因變數的預測擬概率;
▌ "導出"選項卡
將突觸權重估算值導出到XML文件;
給XML模型文件起名並制定存放路徑;
其他選項卡的操作和第一次分析保持一致。返回主面板,點擊"確定"開始執行第二次分析。
第一次分析產生的結果:
總樣本在3個分區的分配比例。
MLP神經網路圖,模型包括1個輸入層、1個隱藏層和1個輸出層,輸入層神經元個數12個,隱藏層9個,輸出層2個。
模型摘要表,模型誤差在1個連續步驟中未出現優化減少現象,模型按預定中止。模型在3個分區中的不正確預測百分比較接近。
模型分類表,軟體默認採用0.5作為正確和錯誤的概率分界,將3大分區樣本的正確率進行交叉對比,顯示出預測為NO,即預測為不拖欠的概率高於拖欠,模型對有拖欠的貸款客戶風險識別能力較低。
預測-實測圖,按照貸款客戶是否拖欠與預測結果進行分組,縱坐標為預測概率。以0.5為分界時,對優質客戶的識別效果較好,但是有較大的概率在識別有拖欠客戶上出錯。
顯然以0.5作為分界並不是最優解,可以嘗試將分界下移至0.3左右,此操作會使第四個箱圖中大量欠貸客戶正確地重新分類為欠貸者,提高風險識別能力。
自變數重要性圖,重要性圖為重要性表格中值的條形圖,以重要性值降序排序。其顯示與客戶穩定性(employ、address)和負債(creddebt、debtinc)相關的變數對於網路如何對客戶進行分類有重大影響;
最後來看導出的XML模型文件:
以XML文件存儲了第二次構建的MLP神經網路模型,可以用於新客戶的分類和風險識別。
新客戶分類
假設現在有150名新客戶,現在需要採用此前建立的模型,對這些客戶進行快速的風險分類和識別。
打開新客戶數據,菜單中選擇:
實用程序 > 評分向導
型"XML文件,點擊"下一步":
檢查新數據文件變數的定義是否准確。下一步。
選擇輸出"預測類別的概率"、"預測值"。完成。
新客戶數據文件新增3列,分別給出每一個新客戶的預測概率和風險分類(是否欠貸)。
多層感知器神經網路 總結
一種前饋式有監督的學習技術;
多層感知器可以發現極為復雜的關系;
如果因變數是分類型,神經網路會根據輸入數據,將記錄劃分為最適合的類別;
如果因變數是連續型,神將網路預測的連續值是輸入數據的某個連續函數;
建議創建訓練-檢驗-支持三個分區,網路訓練學習將更有效;
可將模型導出成 XML 格式對新的數據進行打分;
❽ svm和mlp誰的處理速度比較快
單純比較速度並沒有意義,因為兩種方法的原理完全不同,但從得到全局最優解的角度來看,SVM效果較好。
一、SVM可以發現全局最優,而BP演算法通常只能獲得局部最優
SVM學習問題可以表示為凸優化問題,因此可以利用已知的有效演算法發現目標函數的全局最小值。而其他分類方法(如基於規則的分類器和BP人工神經網路)都採用一種基於貪心學習的策略來搜索假設空間,這種方法一般只能獲得局部最優解。
二、SVM方法避免了「維數災難」
SVM方法巧妙地解決了維數災難難題:應用核函數的展開定理,就不需要知道非線性映射的顯式表達式;由於是在高維特徵空間中建立線性學習機,所以與線性模型相比,不但幾乎不增加計算的復雜性,而且在某種程度上避免了「維數災難」.這一切要歸功於核函數的展開和計算理論。
❾ MLP模型訓練出來的數據預測結果為什麼都是0.1到1之間的數呢
其實我沒看過RSNNS中MLP的源碼,不清楚是在線學習模式還是批量學習模式,,,不過你這個結果估計是在線學習才能得到的。
如果演算法運行無誤,那麼在線學習會不斷調整權值,你的結果可能是因為權值調整太小導致局部收斂,你試試多嘗試些初始值,也調整一下學習效率參數;如果不演算法原因,,你就得看看數據原因了,,MLP也不是萬能的,,,你要麼把數據發給我吧,我的郵箱是1,1,7,4,2,0,6,9,4,7,QQ郵箱。
我好久沒用R了,你不介意的話我空了幫你看看。