導航:首頁 > 源碼編譯 > 貪婪式演算法用什麼軟體求解

貪婪式演算法用什麼軟體求解

發布時間:2022-04-28 22:11:22

❶ 什麼是貪婪演算法

是貪心演算法吧……
就是每次都取最優值。。。比如合並果子:
有n堆果子,每個果子都有一個重量,每次可以任意選擇2堆果子將其合並成一堆,花費是這兩堆果子的重量值之和,求最終合並成一堆的最小(最大)花費。
演算法就是,每次取重量最小(最大)的兩堆果子合並,直到還剩一堆。

❷ 貪婪啟發式演算法求解01背包問題(C語言編碼實現)

這種要麼裝要麼不裝,應該採用動態規劃演算法解決吧

❸ 急求!用貪婪演算法求最大獨立集的程序(C++或者matlab),要有模擬圖形。在線等,高手請進!謝謝了

已發 請查收~哈哈 ^ ^

❹ 求背包問題(貪婪演算法(c語言))

c/w 排序,選擇,以v為閘值,若w過大,選下一個,選完,得結果。
很簡單的

❺ 貪婪演算法應運用什麼軟體求解

如果是要研究演算法就用Matlab,這個是目前很強大的主流軟體,屬於傻瓜式的編程,十分流行。
如果是面向工程應用vs2010吧,這是一個IDE,可以用C、C++、VB等語言實現。

❻ VB用貪婪演算法實現

'窗體上一個文本框text1控制項,用於輸入找補的金額
'一個按鈕command1
PrivateSubCommand1_Click()
Dima(1To3)'把硬幣的幣值存入數組中以分為單位,100,50,10
Dimb(1To3)'用於記錄硬幣的個數
Dimc(1To3)'用於記錄硬幣的名稱
a(1)=100:a(2)=50:a(3)=10
c(1)="一元的硬幣":c(2)="五角的硬幣":c(3)="一角的硬幣"
x=Val(Text1.Text)'需要找補的金額在text1,初值是2.7
x=x*100'擴大為分的單位
Fori=1To3
b(i)=Int(x/a(i))
x=x-b(i)*a(i)
Nexti
Print"找"&Text1.Text&"元的補零,使用最少硬幣組合是"
Fori=1To3
Printc(i)&"="&b(i)
Nexti
EndSub

❼ 我在數學建模中,把所有情況用matlab列出求解,算是貪婪演算法嗎不是的話算什麼演算法呢

你所說的「所有情況」是怎麼得到的?所謂的「貪婪演算法」主要是指「貪婪」的考慮所有演算法,而不是靠任何數學或者計算機的思想去篩選。所以,這里主要的是指你得到所有演算法的方法,而不是說你用什麼去求解。

❽ 貪婪演算法背包

1)登上演算法
用登山演算法求解背包問題 function []=DengShan(n,G,P,W) %n是背包的個數,G是背包的總容量,P是價值向量,W是物體的重量向量 %n=3;G=20;P=[25,24,15];W2=[18,15,10];%輸入量 W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩餘容量 j=1; while W(j)<=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('裝包的方法是');disp(X);disp(X.*W2);disp('總的價值是:');disp(P*X');

時間復雜度是非指數的

2)遞歸法
先看完全背包問題
一個旅行者有一個最多能用m公斤的背包,現在有n種物品,每件的重量分別是W1,W2,...,Wn,
每件的價值分別為C1,C2,...,Cn.若的每種物品的件數足夠多.
求旅行者能獲得的最大總價值。
本問題的數學模型如下:
設 f(x)表示重量不超過x公斤的最大價值,
則 f(x)=max 當x>=w[i] 1<=i<=n
可使用遞歸法解決問題程序如下:
program knapsack04;
const maxm=200;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
function f(x:integer):integer;
var i,t,m:integer;
begin
if x=0 then f:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(x-i)+c[i];
if m>t then t:=m;
end;
f:=t;
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
writeln(f(m));
end.
說明:當m不大時,編程很簡單,但當m較大時,容易超時.
4.2 改進的遞歸法
改進的的遞歸法的思想還是以空間換時間,這只要將遞歸函數計算過程中的各個子函數的值保存起來,開辟一個
一維數組即可
程序如下:
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
p:array[0..maxm] of integer;
function f(x:integer):integer;
var i,t,m:integer;
begin
if p[x]<>-1 then f:=p[x]
else
begin
if x=0 then p[x]:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(i-w[i])+c[i];
if m>t then t:=m;
end;
p[x]:=t;
end;
f:=p[x];
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
fillchar(p,sizeof(p),-1);
writeln(f(m));
end.
3)貪婪演算法
改進的背包問題:給定一個超遞增序列和一個背包的容量,然後在超遞增序列中選(只能選一次)或不選每一個數值,使得選中的數值的和正好等於背包的容量。

代碼思路:從最大的元素開始遍歷超遞增序列中的每個元素,若背包還有大於或等於當前元素值的空間,則放入,然後繼續判斷下一個元素;若背包剩餘空間小於當前元素值,則判斷下一個元素
簡單模擬如下:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{/*產生超遞增序列*/
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{/*輸出當前的超遞增序列*/
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{/*背包問題求解*/
int i;
long r=value;
for(i=count-1;i>=0;i--)/*遍歷超遞增序列中的每個元素*/
{
if(r>=array[i])/*如果當前元素還可以放入背包,即背包剩餘空間還大於當前元素*/
{
r=r-array[i];
cankao[i]=1;
}
else/*背包剩餘空間小於當前元素值*/
cankao[i]=0;
}
}

void main()
{
long array[N];
int cankao[N]=;
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)/*所有已經選中的元素之和*/
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}
貪婪演算法的另一種寫法,beibao函數是以前的代碼,用來比較兩種演算法:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{
int i;
long r=value;
for(i=count-1;i>=0;i--)
{
if(r>=array[i])
{
r=r-array[i];
cankao[i]=1;
}
else
cankao[i]=0;
}
}

int beibao1(long array[],int cankao[],long value,int n)
{/*貪婪演算法*/
int i;
long value1=0;
for(i=n-1;i>=0;i--)/*先放大的物體,再考慮小的物體*/
if((value1+array[i])<=value)/*如果當前物體可以放入*/
{
cankao[i]=1;/*1表示放入*/
value1+=array[i];/*背包剩餘容量減少*/
}
else
cankao[i]=0;
if(value1==value)
return 1;
return 0;
}

void main()
{
long array[N];
int cankao[N]=;
int cankao1[N]=;
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
printf("\nSecond method:\n");
if(beibao1(array,cankao1,value,N)==1)
{
for(i=0;i<N;i++)
if(cankao1[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}

4)動態規劃演算法

解決0/1背包問題的方法有多種,最常用的有貪婪法和動態規劃法。其中貪婪法無法得到問題的最優解,而動態規劃法都可以得到最優解,下面是用動態規劃法來解決0/1背包問題。

動態規劃演算法與分治法類似,其基本思想是將待求解問題分解成若干個子問題,然後從這些子問題的解得到原問題的解。與分治法不同的是,適合於用動態規劃法求解的問題,經分解得到的子問題往往不是互相獨立的,若用分治法解這類問題,則分解得到的子問題數目太多,以至於最後解決原問題需要耗費過多的時間。動態規劃法又和貪婪演算法有些一樣,在動態規劃中,可將一個問題的解決方案視為一系列決策的結果。不同的是,在貪婪演算法中,每採用一次貪婪准則便做出一個不可撤回的決策,而在動態規劃中,還要考察每個最優決策序列中是否包含一個最優子序列。

0/1背包問題

在0 / 1背包問題中,需對容量為c 的背包進行裝載。從n 個物品中選取裝入背包的物品,每件物品i 的重量為wi ,價值為pi 。對於可行的背包裝載,背包中物品的總重量不能超過背包的容量,最佳裝載是指所裝入的物品價值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示選取物品i) 取得最大值。
在該問題中需要決定x1 .. xn的值。假設按i = 1,2,...,n 的次序來確定xi 的值。如果置x1 = 0,則問題轉變為相對於其餘物品(即物品2,3,.,n),背包容量仍為c 的背包問題。若置x1 = 1,問題就變為關於最大背包容量為c-w1 的問題。現設r? 為剩餘的背包容量。
在第一次決策之後,剩下的問題便是考慮背包容量為r 時的決策。不管x1 是0或是1,[x2 ,.,xn ] 必須是第一次決策之後的一個最優方案,如果不是,則會有一個更好的方案[y2,.,yn ],因而[x1,y2,.,yn ]是一個更好的方案。
假設n=3, w=[100,14,10], p=[20,18,15], c= 116。若設x1 = 1,則在本次決策之後,可用的背包容量為r= 116-100=16 。[x2,x3 ]=[0,1] 符合容量限制的條件,所得值為1 5,但因為[x2,x3 ]= [1,0] 同樣符合容量條件且所得值為1 8,因此[x2,x3 ] = [ 0,1] 並非最優策略。即x= [ 1,0,1] 可改進為x= [ 1,1,0 ]。若設x1 = 0,則對於剩下的兩種物品而言,容量限制條件為116。總之,如果子問題的結果[x2,x3 ]不是剩餘情況下的一個最優解,則[x1,x2,x3 ]也不會是總體的最優解。在此問題中,最優決策序列由最優決策子序列組成。假設f (i,y) 表示剩餘容量為y,剩餘物品為i,i + 1,...,n 時的最優解的值,即:利用最優序列由最優子序列構成的結論,可得到f 的遞歸式為:
當j>=wi時: f(i,j)=max ①式
當0<=j<wi時:f(i,j)=f(i+1,j) ②式
fn( 1 ,c) 是初始時背包問題的最優解。
以本題為例:若0≤y<1 0,則f ( 3 ,y) = 0;若y≥1 0,f ( 3 ,y) = 1 5。利用②式,可得f (2, y) = 0 ( 0≤y<10 );f(2,y)= 1 5(1 0≤y<1 4);f(2,y)= 1 8(1 4≤y<2 4)和f(2,y)= 3 3(y≥2 4)。因此最優解f ( 1 , 11 6 ) = m a x = m a x = m a x = 3 8。
現在計算xi 值,步驟如下:若f ( 1 ,c) =f ( 2 ,c),則x1 = 0,否則x1 = 1。接下來需從剩餘容量c-w1中尋求最優解,用f (2, c-w1) 表示最優解。依此類推,可得到所有的xi (i= 1.n) 值。
在該例中,可得出f ( 2 , 116 ) = 3 3≠f ( 1 , 11 6 ),所以x1 = 1。接著利用返回值3 8 -p1=18 計算x2 及x3,此時r = 11 6 -w1 = 1 6,又由f ( 2 , 1 6 ) = 1 8,得f ( 3 , 1 6 ) = 1 4≠f ( 2 , 1 6 ),因此x2 = 1,此時r= 1 6 -w2 = 2,所以f (3,2) =0,即得x3 = 0。

❾ 貪婪啟發式和貪婪演算法的區別是什麼

馬踏棋盤的問題很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一個有名的演算法。在每個結點對其子結點進行選取時,優先選擇『出口』最小的進行搜索,『出口』的意思是在這些子結點中它們的可行子結點的個數,也就是『孫子』結點越少的越優先跳,為什麼要這樣選取,這是一種局部調整最優的做法,如果優先選擇出口多的子結點,那出口少的子結點就會越來越多,很可能出現『死』結點(顧名思義就是沒有出口又沒有跳過的結點),這樣對下面的搜索純粹是徒勞,這樣會浪費很多無用的時間,反過來如果每次都優先選擇出口少的結點跳,那出口少的結點就會越來越少,這樣跳成功的機會就更大一些。這種演算法稱為為貪心演算法,也叫貪婪演算法或啟發式演算法,它對整個求解過程的局部做最優調整,它只適用於求較優解或者部分解,而不能求最優解。這樣的調整方法叫貪心策略,至於什麼問題需要什麼樣的貪心策略是不確定的,具體問題具體分析。實驗可以證明馬遍歷問題在運用到了上面的貪心策略之後求解速率有非常明顯的提高,如果只要求出一個解甚至不用回溯就可以完成,因為在這個演算法提出的時候世界上還沒有計算機,這種方法完全可以用手工求出解來,其效率可想而知。
貪心演算法當然也有正確的時候。求最小生成樹的Prim演算法和Kruskal演算法都是漂亮的貪心演算法。
貪心法的應用演算法有Dijkstra的單源最短路徑和Chvatal的貪心集合覆蓋啟發式
所以需要說明的是,貪心演算法可以與隨機化演算法一起使用,具體的例子就不再多舉了。其實很多的智能演算法(也叫啟發式演算法),本質上就是貪心演算法和隨機化演算法結合——這樣的演算法結果雖然也是局部最優解,但是比單純的貪心演算法更靠近了最優解。例如遺傳演算法,模擬退火演算法。

閱讀全文

與貪婪式演算法用什麼軟體求解相關的資料

熱點內容
小程序賬號登錄源碼 瀏覽:876
雲南社保局app叫什麼 瀏覽:693
美女程序員吃大餐 瀏覽:208
項目二級文件夾建立規則 瀏覽:558
dns使用加密措施嗎 瀏覽:172
php獨立運行 瀏覽:531
手機sh執行命令 瀏覽:729
雲伺服器的角色 瀏覽:735
單片機頻率比例 瀏覽:842
我的世界伺服器如何關閉正版驗證 瀏覽:506
如何查roid伺服器上的 瀏覽:132
安卓手機主板如何撬晶元不掉電 瀏覽:251
php各個框架的優缺點 瀏覽:103
php1100生成數組 瀏覽:361
以後做平面設計好還是程序員好 瀏覽:554
雲伺服器應用管理 瀏覽:440
飢荒雲伺服器搭建過程 瀏覽:188
可編程式控制制器優點 瀏覽:101
壓縮垃圾車說明書 瀏覽:30
五輪書pdf 瀏覽:804