導航:首頁 > 源碼編譯 > 圖像模板匹配演算法

圖像模板匹配演算法

發布時間:2022-05-03 17:22:05

❶ 百度的拍照識萬物屬於模版匹配的一種是對的嗎

摘要 是的。模板就是一副已知的小圖像,而模板匹配就是在一副大圖像中搜尋目標,已知該圖中有要找的目標,且該目標同模板有相同的尺寸、方向和圖像元素,通過一定的演算法可以在圖中找到目標,確定其坐標位置。

❷ 圖像處理問題:模板匹配後,已經找到最佳匹配點,如何在圖像中剔除與模板目標相似的子圖像。

這個簡單,你是肯定是用匹配演算法做的,這樣就會有最大匹配值,這個值就是你的最佳匹配點,然後小於這個值的你全部刪除,不顯示出來就可以了。

❸ opencv 中自帶的模板匹配演算法出處

方法如下:
使用OPENCV下SIFT庫做圖像匹配的常式
// opencv_empty_proj.cpp : 定義控制台應用程序的入口點。
//
#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
#include<opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
#include<vector>
using namespace std;
using namespace cv;

int _tmain(int argc, _TCHAR* argv[])
{
const char* imagename = "img.jpg";

//從文件中讀入圖像
Mat img = imread(imagename);
Mat img2=imread("img2.jpg");

//如果讀入圖像失敗
if(img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
if(img2.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
//顯示圖像
imshow("image before", img);
imshow("image2 before",img2);
//sift特徵檢測
SiftFeatureDetector siftdtc;
vector<KeyPoint>kp1,kp2;
siftdtc.detect(img,kp1);
Mat outimg1;
drawKeypoints(img,kp1,outimg1);
imshow("image1 keypoints",outimg1);
KeyPoint kp;
vector<KeyPoint>::iterator itvc;
for(itvc=kp1.begin();itvc!=kp1.end();itvc++)
{
cout<<"angle:"<<itvc->angle<<"\t"<<itvc->class_id<<"\t"<<itvc->octave<<"\t"<<itvc->pt<<"\t"<<itvc->response<<endl;
}
siftdtc.detect(img2,kp2);
Mat outimg2;
drawKeypoints(img2,kp2,outimg2);
imshow("image2 keypoints",outimg2);
SiftDescriptorExtractor extractor;
Mat descriptor1,descriptor2;
BruteForceMatcher<L2<float>> matcher;
vector<DMatch> matches;
Mat img_matches;
extractor.compute(img,kp1,descriptor1);
extractor.compute(img2,kp2,descriptor2);
imshow("desc",descriptor1);
cout<<endl<<descriptor1<<endl;
matcher.match(descriptor1,descriptor2,matches);
drawMatches(img,kp1,img2,kp2,matches,img_matches);
imshow("matches",img_matches);
//此函數等待按鍵,按鍵盤任意鍵就返回
waitKey();
return 0;
}

❹ 人體行為識別有哪些演算法

人體行為識別前已有的方法主要分為三大類:基於模板的方法,基於概率統計的方法和基於語義的方法。
模板匹配是一種較早用在人體運動識別上的方法,將運動圖像序列轉化為一個或一組靜態的模板,通過將待識別樣本的模板與已知的模板進行匹配獲得識別結果。在行為識別中,基於模板匹配的演算法可以分為幀對幀匹配方法和融合匹配方法。主要方法有:運動能量圖像(MEI)和運動歷史圖像(MHI),基於輪廓的平均運動形狀(MMS)和基於運動前景的平均運動能量(AME)等。
概率統計方法進行運動識別是把運動的每一種靜態姿勢定義為一個狀態或者一個狀態的集合,通過網路的方式將這些狀態連接起來,狀態和狀態之間的切換採用概率來描述。主要有隱馬爾科夫模型HMM, 最大熵馬爾科夫模型(MEMM),條件隨機場(CRF)等。

❺ opencv的模板匹配如何計算置信度

Opencv模板匹配函數裡麵包含了匹配的置信度:

img_rgb = cv2.imread('mario.jpg')。

img_gray = cv2.cvtColor(img_rgb,cv2.COLOR_BGR2GRAY)。

template = cv2.imread('mario_coin.jpg', 0)。

h, w =template.shape[:2]。

# res裡麵包含的是匹配的置信度。

res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)。

threshold = 0.8。

# 取匹配程度大於0.8的坐標。

loc = np.where(res >= threshold)。

OpenCV是一個基於Apache2.0許可(開源)發行的跨平台計算機視覺和機器學習軟體庫,可以運行在Linux、Windows、Android和Mac OS操作系統上。

它輕量級而且高效——由一系列 C 函數和少量 C++ 類構成,同時提供了Python、Ruby、MATLAB等語言的介面,實現了圖像處理和計算機視覺方面的很多通用演算法。

OpenCV用C++語言編寫,它具有C ++,Python,Java和MATLAB介面,並支持Windows,Linux,Android和Mac OS,OpenCV主要傾向於實時視覺應用,並在可用時利用MMX和SSE指令, 如今也提供對於C#、Ch、Ruby,GO的支持。

❻ 想問一下有沒有比較方便的人臉識別演算法,求推薦

主流的人臉識別技術基本上可以歸結為三類,即:基於幾何特徵的方法、基於模板的方法和基於模型的方法。
1. 基於幾何特徵的方法是最早、最傳統的方法,通常需要和其他演算法結合才能有比較好的效果;
2. 基於模板的方法可以分為基於相關匹配的方法、特徵臉方法、線性判別分析方法、奇異值分解方法、神經網路方法、動態連接匹配方法等。
3. 基於模型的方法則有基於隱馬爾柯夫模型,主動形狀模型和主動外觀模型的方法等。
1. 基於幾何特徵的方法
人臉由眼睛、鼻子、嘴巴、下巴等部件構成,正因為這些部件的形狀、大小和結構上的各種差異才使得世界上每個人臉千差萬別,因此對這些部件的形狀和結構關系的幾何描述,可以做為人臉識別的重要特徵。幾何特徵最早是用於人臉側面輪廓的描述與識別,首先根據側面輪廓曲線確定若干顯著點,並由這些顯著點導出一組用於識別的特徵度量如距離、角度等。Jia 等由正麵灰度圖中線附近的積分投影模擬側面輪廓圖是一種很有新意的方法。
採用幾何特徵進行正面人臉識別一般是通過提取人眼、口、鼻等重要特徵點的位置和眼睛等重要器官的幾何形狀作為分類特徵,但Roder對幾何特徵提取的精確性進行了實驗性的研究,結果不容樂觀。
可變形模板法可以視為幾何特徵方法的一種改進,其基本思想是 :設計一個參數可調的器官模型 (即可變形模板),定義一個能量函數,通過調整模型參數使能量函數最小化,此時的模型參數即做為該器官的幾何特徵。
這種方法思想很好,但是存在兩個問題,一是能量函數中各種代價的加權系數只能由經驗確定,難以推廣,二是能量函數優化過程十分耗時,難以實際應用。 基於參數的人臉表示可以實現對人臉顯著特徵的一個高效描述,但它需要大量的前處理和精細的參數選擇。同時,採用一般幾何特徵只描述了部件的基本形狀與結構關系,忽略了局部細微特徵,造成部分信息的丟失,更適合於做粗分類,而且目前已有的特徵點檢測技術在精確率上還遠不能滿足要求,計算量也較大。
2. 局部特徵分析方法(Local Face Analysis)
主元子空間的表示是緊湊的,特徵維數大大降低,但它是非局部化的,其核函數的支集擴展在整個坐標空間中,同時它是非拓撲的,某個軸投影後臨近的點與原圖像空間中點的臨近性沒有任何關系,而局部性和拓撲性對模式分析和分割是理想的特性,似乎這更符合神經信息處理的機制,因此尋找具有這種特性的表達十分重要。基於這種考慮,Atick提出基於局部特徵的人臉特徵提取與識別方法。這種方法在實際應用取得了很好的效果,它構成了FaceIt人臉識別軟體的基礎。
3. 特徵臉方法(Eigenface或PCA)
特徵臉方法是90年代初期由Turk和Pentland提出的目前最流行的演算法之一,具有簡單有效的特點, 也稱為基於主成分分析(principal component analysis,簡稱PCA)的人臉識別方法。
特徵子臉技術的基本思想是:從統計的觀點,尋找人臉圖像分布的基本元素,即人臉圖像樣本集協方差矩陣的特徵向量,以此近似地表徵人臉圖像。這些特徵向量稱為特徵臉(Eigenface)。
實際上,特徵臉反映了隱含在人臉樣本集合內部的信息和人臉的結構關系。將眼睛、面頰、下頜的樣本集協方差矩陣的特徵向量稱為特徵眼、特徵頜和特徵唇,統稱特徵子臉。特徵子臉在相應的圖像空間中生成子空間,稱為子臉空間。計算出測試圖像窗口在子臉空間的投影距離,若窗口圖像滿足閾值比較條件,則判斷其為人臉。
基於特徵分析的方法,也就是將人臉基準點的相對比率和其它描述人臉臉部特徵的形狀參數或類別參數等一起構成識別特徵向量,這種基於整體臉的識別不僅保留了人臉部件之間的拓撲關系,而且也保留了各部件本身的信息,而基於部件的識別則是通過提取出局部輪廓信息及灰度信息來設計具體識別演算法。現在Eigenface(PCA)演算法已經與經典的模板匹配演算法一起成為測試人臉識別系統性能的基準演算法;而自1991年特徵臉技術誕生以來,研究者對其進行了各種各樣的實驗和理論分析,FERET'96測試結果也表明,改進的特徵臉演算法是主流的人臉識別技術,也是具有最好性能的識別方法之一。
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然後再計算出它們的幾何特徵量,而這些特徵量形成一描述該面像的特徵向量。其技術的核心實際為「局部人體特徵分析」和「圖形/神經識別演算法。」這種演算法是利用人體面部各器官及特徵部位的方法。如對應幾何關系多數據形成識別參數與資料庫中所有的原始參數進行比較、判斷與確認。Turk和Pentland提出特徵臉的方法,它根據一組人臉訓練圖像構造主元子空間,由於主元具有臉的形狀,也稱為特徵臉 ,識別時將測試 圖像投影到主元子空間上,得到一組投影系數,和各個已知人的人臉圖像比較進行識別。Pentland等報告了相當好的結果,在 200個人的 3000幅圖像中得到 95%的正確識別率,在FERET資料庫上對 150幅正面人臉象只有一個誤識別。但系統在進行特徵臉方法之前需要作大量預處理工作如歸一化等。
在傳統特徵臉的基礎上,研究者注意到特徵值大的特徵向量 (即特徵臉 )並不一定是分類性能好的方向,據此發展了多種特徵 (子空間 )選擇方法,如Peng的雙子空間方法、Weng的線性歧義分析方法、Belhumeur的FisherFace方法等。事實上,特徵臉方法是一種顯式主元分析人臉建模,一些線性自聯想、線性壓縮型BP網則為隱式的主元分析方法,它們都是把人臉表示為一些向量的加權和,這些向量是訓練集叉積陣的主特徵向量,Valentin對此作了詳細討論。總之,特徵臉方法是一種簡單、快速、實用的基於變換系數特徵的演算法,但由於它在本質上依賴於訓練集和測試集圖像的灰度相關性,而且要求測試圖像與訓練集比較像,所以它有著很大的局限性。
基於KL 變換的特徵人臉識別方法
基本原理:
KL變換是圖象壓縮中的一種最優正交變換,人們將它用於統計特徵提取,從而形成了子空間法模式識別的基礎,若將KL變換用於人臉識別,則需假設人臉處於低維線性空間,且不同人臉具有可分性,由於高維圖象空間KL變換後可得到一組新的正交基,因此可通過保留部分正交基,以生成低維人臉空間,而低維空間的基則是通過分析人臉訓練樣本集的統計特性來獲得,KL變換的生成矩陣可以是訓練樣本集的總體散布矩陣,也可以是訓練樣本集的類間散布矩陣,即可採用同一人的數張圖象的平均來進行訓練,這樣可在一定程度上消除光線等的干擾,且計算量也得到減少,而識別率不會下降。
4. 基於彈性模型的方法
Lades等人針對畸變不變性的物體識別提出了動態鏈接模型 (DLA),將物體用稀疏圖形來描述 (見下圖),其頂點用局部能量譜的多尺度描述來標記,邊則表示拓撲連接關系並用幾何距離來標記,然後應用塑性圖形匹配技術來尋找最近的已知圖形。Wiscott等人在此基礎上作了改進,用FERET圖像庫做實驗,用 300幅人臉圖像和另外 300幅圖像作比較,准確率達到 97.3%。此方法的缺點是計算量非常巨大 。
Nastar將人臉圖像 (Ⅰ ) (x,y)建模為可變形的 3D網格表面 (x,y,I(x,y) ) (如下圖所示 ),從而將人臉匹配問題轉化為可變形曲面的彈性匹配問題。利用有限元分析的方法進行曲面變形,並根據變形的情況判斷兩張圖片是否為同一個人。這種方法的特點在於將空間 (x,y)和灰度I(x,y)放在了一個 3D空間中同時考慮,實驗表明識別結果明顯優於特徵臉方法。
Lanitis等提出靈活表現模型方法,通過自動定位人臉的顯著特徵點將人臉編碼為 83個模型參數,並利用辨別分析的方法進行基於形狀信息的人臉識別。彈性圖匹配技術是一種基於幾何特徵和對灰度分布信息進行小波紋理分析相結合的識別演算法,由於該演算法較好的利用了人臉的結構和灰度分布信息,而且還具有自動精確定位面部特徵點的功能,因而具有良好的識別效果,適應性強識別率較高,該技術在FERET測試中若干指標名列前茅,其缺點是時間復雜度高,速度較慢,實現復雜。
5. 神經網路方法(Neural Networks)
人工神經網路是一種非線性動力學系統,具有良好的自組織、自適應能力。目前神經網路方法在人臉識別中的研究方興未艾。Valentin提出一種方法,首先提取人臉的 50個主元,然後用自相關神經網路將它映射到 5維空間中,再用一個普通的多層感知器進行判別,對一些簡單的測試圖像效果較好;Intrator等提出了一種混合型神經網路來進行人臉識別,其中非監督神經網路用於特徵提取,而監督神經網路用於分類。Lee等將人臉的特點用六條規則描述,然後根據這六條規則進行五官的定位,將五官之間的幾何距離輸入模糊神經網路進行識別,效果較一般的基於歐氏距離的方法有較大改善,Laurence等採用卷積神經網路方法進行人臉識別,由於卷積神經網路中集成了相鄰像素之間的相關性知識,從而在一定程度上獲得了對圖像平移、旋轉和局部變形的不變性,因此得到非常理想的識別結果,Lin等提出了基於概率決策的神經網路方法 (PDBNN),其主要思想是採用虛擬 (正反例 )樣本進行強化和反強化學習,從而得到較為理想的概率估計結果,並採用模塊化的網路結構 (OCON)加快網路的學習。這種方法在人臉檢測、人臉定位和人臉識別的各個步驟上都得到了較好的應用,其它研究還有 :Dai等提出用Hopfield網路進行低解析度人臉聯想與識別,Gutta等提出將RBF與樹型分類器結合起來進行人臉識別的混合分類器模型,Phillips等人將MatchingPursuit濾波器用於人臉識別,國內則採用統計學習理論中的支撐向量機進行人臉分類。
神經網路方法在人臉識別上的應用比起前述幾類方法來有一定的優勢,因為對人臉識別的許多規律或規則進行顯性的描述是相當困難的,而神經網路方法則可以通過學習的過程獲得對這些規律和規則的隱性表達,它的適應性更強,一般也比較容易實現。因此人工神經網路識別速度快,但識別率低 。而神經網路方法通常需要將人臉作為一個一維向量輸入,因此輸入節點龐大,其識別重要的一個目標就是降維處理。
PCA的演算法描述:利用主元分析法 (即 Principle Component Analysis,簡稱 PCA)進行識別是由 Anderson和 Kohonen提出的。由於 PCA在將高維向量向低維向量轉化時,使低維向量各分量的方差最大,且各分量互不相關,因此可以達到最優的特徵抽取。

❼ 傳統行為識別方法和基於深度學習的人體行為識別演算法怎麼比較

人體行為識別前已有的方法主要分為三大類:基於模板的方法,基於概率統計的方法和基於語義的方法。
模板匹配是一種較早用在人體運動識別上的方法,將運動圖像序列轉化為一個或一組靜態的模板,通過將待識別樣本的模板與已知的模板進行匹配獲得識別結果。在行為識別中,基於模板匹配的演算法可以分為幀對幀匹法和融合匹法。主要方法有:運動能量圖像(MEI)和運動歷史圖像(MHI),基於輪廓的平均運動形狀(MMS)和基於運動前景的平均運動能量(AME)等。
概率統計方法進行運動識別是把運動的每一種靜態姿勢定義為一個狀態或者一個狀態的集合,通過網路的方式將這些狀態連接起來,狀態和狀態之間的切換採用概率來描述。主要有隱馬爾科夫模型HMM, 最大熵馬爾科夫模型(MEMM),條件隨機場(CRF)等。

❽ 雙目視覺的匹配演算法是不是有好幾種具體是哪幾種

與普通的圖像模板匹配不同的是,立體匹配是通過在兩幅或多幅存在視點差異、幾何畸變、灰度畸變、雜訊干擾的圖像對之間進行的,不存在任何標准模板進行匹配。立體匹配方法一般包含以下三個問題:(1)基元的選擇,即選擇適當的圖像特徵如點、直線、相位等作為匹配基元;(2)匹配的准則,將關於物理世界的某些固有特徵表示為匹配所必須遵循的若干規則,使匹配結果能真實反映景物的本來面目;(3)演算法結構,通過利用適當的數學方法設計能正確匹配所選擇基元的穩定演算法。

根據匹配基元的不同,立體視覺匹配演算法目前主要分為三大類,即區域匹配、相位匹配和特徵匹配:

基於區域灰度的匹配演算法是把一幅圖像(基準圖)中某一點的灰度鄰域作為模板,在另一幅圖像(待匹配圖)中搜索具有相同(或相似)灰度值分布的對應點鄰域,從而實現兩幅圖像的匹配。這類演算法的性能取決於度量演算法及搜索策略的選擇。另外,也必須考慮匹配窗口大小、形式的選擇,大窗口對於景物中存在的遮擋或圖像不光滑的情況會更多的出現誤匹配,小窗口則不具有足夠的灰度變化信息,不同的窗口形式對匹配信息也會有不同的影響。因此應該合理選取匹配區域的大小和形式來達到較好的匹配結果。

相位匹配是近二十年發展起來的一種匹配演算法,相位作為匹配基元,即認為圖像對中的對應點局部相位是一致的。最常用的相位匹配演算法有相位相關法和相位差——頻率法,雖然該方法是一種性能穩定、具有較強的抗輻射抗透視畸變能力、簡單高效、能得到稠密視差圖的特徵匹配方法。但是,當局部結構存在的假設不成立時,相位匹配演算法因帶通輸出信號的幅度太低而失去有效性,也就是通常提到的相位奇點問題,在相位奇點附近,相位信息對位置和頻率的變化極為敏感,因此用這些像素所確定的相位差異來衡量匹配誤差將導致極不可靠的結果。此外,相位匹配演算法的收斂范圍與帶通濾波器的波長有關,通常要考慮相位卷繞,在用相位差進行視差計算時,由於所採用的相位只是原信號某一帶通條件下的相位,故視差估計只能限制在某一限定范圍之內,隨視差范圍的增大,其精確性會有所下降。

基於特徵的圖像匹配方法是目前最常用的方法之一,由於它能夠將對整個圖像進行的各種分析轉化為對圖像特徵(特徵點、特徵曲線等)的分析的優點,從而大大減小了圖像處理過程的計算量,對灰度變化、圖像變形、噪音污染以及景物遮擋等都有較好的適應能力。

基於特徵的匹配方法是為使匹配過程滿足一定的抗噪能力且減少歧義性問題而提出來的。與基於區域的匹配方法不同,基於特徵的匹配方法是有選擇地匹配能表示景物自身特性的特徵,通過更多地強調空間景物的結構信息來解決匹配歧義性問題。這類方法將匹配的搜索范圍限制在一系列稀疏的特徵上。利用特徵間的距離作為度量手段,具有最小距離的特徵對就是最相近的特徵對,也就是匹配對。特徵間的距離度量有最大最小距離、歐氏距離等。

特徵點匹配演算法嚴格意義上可以分成特徵提取、特徵匹配和消除不良匹配點三步。特徵匹配不直接依賴於灰度,具有較強的抗干擾性。該類方法首先從待匹配的圖像中提取特徵,用相似性度量和一些約束條件確定幾何變換,最後將該變換作用於待匹配圖像。匹配中常用的特徵基元有角點、邊緣、輪廓、直線、顏色、紋理等。同時,特徵匹配演算法也同樣地存在著一些不足,主要表現為:

(l)特徵在圖像中的稀疏性決定了特徵匹配只能得到稀疏的視差場,要獲得密集的視差場必須通過使用插值的過程,插值過程通常較為復雜。

(2)特徵的提取和定位的准確與否直接影響特徵匹配結果的精確度。

(3)由於其應用場合的局限性,特徵匹配往往適用於具有特徵信息顯著的環境中,在缺少顯著主導特徵環境中該方法有很大困難。

總之,特徵匹配基元包含了演算法編程上的靈活性以及令人滿意的統計特性。演算法的許多約束條件均能清楚地應用於數據結構,而數據結構的規則性使得特徵匹配非常適用於硬體設計。例如,基於線段的特徵匹配演算法將場景模型描繪成相互聯結的邊緣線段,而不是區域匹配中的平面模型,因此能很好地處理一些幾何畸變問題,對對比度和明顯的光照變化等相對穩定。特徵匹配由於不直接依賴於灰度,計算量小,比基於區域的匹配演算法速度快的多。且由於邊緣特徵往往出現在視差不連續的區域,特徵匹配較易處理立體視覺匹配中的視差不連續問題。

❾ 現在很多工程項目都用車牌識別系統,我想問一下車牌識別系統的原理是什麼

核心演算法:從六個步驟來提取我們抓拍的車牌信息,第一:圖像捕捉採集、第二:車牌定位、第三:預處理、第四:字元分割、第五:字元識別、第六:輸出車牌識別一體機抓拍的結果。以上步驟里包含了數字形態學運演算法,字元串分割等演算法。

對同業興創停車場的車輛車牌快速抓拍捕捉確定位置,根據車牌顏色,數字,和字母精準識別分割,提取信息並儲存到電腦里,方便車輛出場時調用時間信息來計算費用,這樣的演算法准確,高效避免出入口擁堵現象的發生,300萬像素的高清晰CMOS圖像感測器,高性能DSP為圖像處理核心,內置控制CPU,多項新的技術可對圖像編碼、處理分析等起到重大作用。

整體結構及設計理念:一體機外形採用槍型機,結構採用嵌入式抓拍機的布局格式,集成度高,專業用於停車場收費車道的工業級車牌識別一體機,整體的設計裡面做到了三防,分別是防水、防塵、防震動,即使在惡劣的外界環境下也依然保持很高的識別准確率。

(一體機內部結構)

自動收費軟體:界面操作簡單易學,格局分布明確、視覺感強,支持多種傳輸協議:ICP、UDP、FTP、TFTP格式,機身自帶64G內存,可存儲jpg格式圖像高達30000多張。採用H.264視頻圖像高壓技術,對每天,每季度,年收費得出明細方便日後查看、核查,支持軟體升級功能實現人臉識別技術。

一體機特點:系統可以全天不間斷工作、不會疲勞、錯誤率極低,自動調節拍攝車牌時照成白平衡,色彩對比度不合理情況,將車牌識別設備安裝於出入口,記錄車輛的牌照號碼、出入時間,並與地感線圈,欄桿機起降的控制完美結合,實現車輛的自動管理。節省人力、提高效率。

一體機工作性能:實現在低照度彩色攝像機的基礎上,通過軟體的功能,把圖像中最亮的部分遮擋。一般可將大燈的強光遮擋,從而將車牌較清晰的抓拍下來,寬動態功能:這是解決車燈對於抓拍影響的最好的辦法,當背景光過亮時,能夠自動調節白平衡,並且在斷電的時候還可以繼續上傳的功能。

❿ 使用OpenCV進行模板匹配(原圖-模板圖)

匹配演算法有很多,比如最簡單的對比原圖和模板圖的像素值。
但是這種方法稍微有一點旋轉和光照變化結果就會很差。

為了改進這個,有了SAD演算法。
然後SAD相似的SSD。
再然後是計算區域互相關性的NCC演算法。
以上三種演算法中,SAD演算法最簡單,因此當模板大小確定後,SAD演算法的速度最快。NCC演算法與SAD演算法相比要復雜得多。

至於演算法的過程,這三個演算法都是很好理解的演算法,我覺得還是自學比較好。

閱讀全文

與圖像模板匹配演算法相關的資料

熱點內容
噴油螺桿製冷壓縮機 瀏覽:577
python員工信息登記表 瀏覽:375
高中美術pdf 瀏覽:158
java實現排列 瀏覽:511
javavector的用法 瀏覽:980
osi實現加密的三層 瀏覽:230
大眾寶來原廠中控如何安裝app 瀏覽:912
linux內核根文件系統 瀏覽:241
3d的命令面板不見了 瀏覽:524
武漢理工大學伺服器ip地址 瀏覽:147
亞馬遜雲伺服器登錄 瀏覽:523
安卓手機如何進行文件處理 瀏覽:70
mysql執行系統命令 瀏覽:929
php支持curlhttps 瀏覽:142
新預演算法責任 瀏覽:443
伺服器如何處理5萬人同時在線 瀏覽:249
哈夫曼編碼數據壓縮 瀏覽:424
鎖定伺服器是什麼意思 瀏覽:383
場景檢測演算法 瀏覽:616
解壓手機軟體觸屏 瀏覽:348