導航:首頁 > 源碼編譯 > 確定演算法的基本操作次數

確定演算法的基本操作次數

發布時間:2022-05-27 01:03:11

A. 時間復雜度(計算方法,如果計算,及其解釋)

時間復雜度1. 演算法復雜度分為 時間復雜度和空間復雜度。
作用: 時間復雜度是度量演算法執行的時間長短;而空間復雜度是度量演算法所需存儲空間的大小。
2. 一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))
分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
3. 在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,在找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n的三次方 次
}
}
則有 T(n)= n的平方+n的三次方,根據上面空號里的同數量級,我們可以確定 n的三次方 為T(n)的同數量級
則有f(n)= n的三次方,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n的三次方)

B. 關於演算法時間復雜度分析的疑問

誰跟你說的分析時間復雜度是用比較次數來衡量的?
一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))
分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))

一般情況時間復雜度是以你演算法中最復雜的那個循環來看的,
比如有個
for(i = 0;i < n;i ++)
{
for(j = 0;j < n;j ++)
{
...

}
}
後面不管他有多少個單獨的
for(i = 0;i < n;i ++)
{
...

}
他的時間復雜度都是O(n2)
不會是O(n2) + O(n) + O(n) + O(2n)...這樣的

C. 如何計算時間復雜度

如何計算時間復雜度

定義:如果一個問題的規模是n,解這一問題的某一演算法所需要的時間為T(n),它是n的某一函數 T(n)稱為這一演算法的「時間復雜性」。

當輸入量n逐漸加大時,時間復雜性的極限情形稱為演算法的「漸近時間復雜性」。

我們常用大O表示法表示時間復雜性,注意它是某一個演算法的時間復雜性。大O表示只是說有上界,由定義如果f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。

此外,一個問題本身也有它的復雜性,如果某個演算法的復雜性到達了這個問題復雜性的下界,那就稱這樣的演算法是最佳演算法。

「大 O記法」:在這種描述中使用的基本參數是 n,即問題實例的規模,把復雜性或運行時間表達為n的函數。這里的「O」表示量級 (order),比如說「二分檢索是 O(logn)的」,也就是說它需要「通過logn量級的步驟去檢索一個規模為n的數組」記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增長。

這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)演算法在n較小的情況下可能比一個高附加代價的 O(nlogn)演算法運行得更快。當然,隨著n足夠大以後,具有較慢上升函數的演算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;

以 上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。演算法的時間復雜度為常數階,記作T(n)=O(1)。如果演算法的執行時 間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。

O(n^2)

2.1. 交換i和j的內容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
該程序的時間復雜度T(n)=O(n^2).

O(n)

2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解: 語句1的頻度:2,
語句2的頻度: n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n )

2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n), 則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解: 當i=m, j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這里最內循環共進行了0+1+...+m-1=(m-1)m/2次所以,i從0取到n, 則循環共進行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以時間復雜度為O(n^3).

我 們還應該區分演算法的最壞情況的行為和期望行為。如快速排序的最 壞情況運行時間是 O(n^2),但期望時間是 O(nlogn)。通過每次都仔細 地選擇基準值,我們有可能把平方情況 (即O(n^2)情況)的概率減小到幾乎等於 0。在實際中,精心實現的快速排序一般都能以 (O(nlogn)時間運行。
下面是一些常用的記法:

訪問數組中的元素是常數時間操作,或說O(1)操作。一個演算法 如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。用strcmp比較兩個具有n個字元的串需要O(n)時間 。常規的矩陣乘演算法是O(n^3),因為算出每個元素都需要將n對 元素相乘並加到一起,所有元素的個數是n^2。
指數時間演算法通常來源於需要 求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的演算法將是O(2n)的 。指數演算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名 的「巡迴售貨員問題」 ),到目前為止找到的演算法都是指數的。如果我們真的遇到這種情況, 通常應該用尋找近似最佳結果的演算法替代之。

D. 一個演算法的基本操作執行次數為(3n2+2nlog2n+4n-7)/(5n),則其時間復雜度表示為

演算法的時間復雜度是看基本操作的次數,但是基本操作在具體的程序分析時可能不一樣,有的在意元素之間比較的次數,有的在意元素插入或移位的次數,答案為O(n^1/2)可能是因為指定了某種特定的操作作為基本操作。
但是如果給定的基本操作次數為(3n2+2nlog2n+4n-7)/(5n),則時間復雜度應該為O(n)
個人理解,如有不對,請批評指正

E. 一個演算法的運行時所消耗的時間是如何測出來的

在忽略機器性能的基礎上我們用演算法時間復雜度來計算演算法執行的時間
1.時間頻度
一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
2.計算方法
1. 一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n)) 分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。 2. 在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n)) 例:演算法: for(i=1;i<=n;++i) { for(j=1;j<=n;++j) { c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n的平方 次 for(k=1;k<=n;++k) c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n的三次方 次 } } 則有 T(n)= n的平方+n的三次方,根據上面括弧里的同數量級,我們可以確定 n的三次方 為T(n)的同數量級 則有f(n)= n的三次方,然後根據T(n)/f(n)求極限可得到常數c 則該演算法的 時間復雜度:T(n)=O(n的三次方)
3.分類
按數量級遞增排列,常見的時間復雜度有: 常數階O(1),對數階O(log2n),線性階O(n), 線性對數階O(nlog2n),平方階O(n2),立方階O(n3),..., k次方階O(nk), 指數階O(2n) 。隨著問題規模n的不斷增大,上述時間復雜度不斷增大,演算法的執行效率越低。

F. 數據結構中評價演算法的兩個重要指標是什麼

數據結構中評價演算法的兩個重要指標是時間復雜度和空間復雜度。

同一問題可用不同演算法解決,而一個演算法的質量優劣將影響到演算法乃至程序的效率。演算法分析的目的在於選擇合適演算法和改進演算法。一個演算法的評價主要從時間復雜度和空間復雜度來考慮。

1、時間復雜度:

演算法的時間復雜度是指執行演算法所需要的計算工作量。一般來說,計算機演算法是問題規模n 的函數f(n),演算法的時間復雜度也因此記做。

2、空間復雜度:

演算法的空間復雜度是指演算法需要消耗的內存空間。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。

(6)確定演算法的基本操作次數擴展閱讀:

評估演算法效率的方法:

1、事後統計方法

這種方法主要是通過設計好的測試程序和數據,利用計算機計時器對不同演算法編制的程序的運行時間進行比較,從而確定演算法效率的高低。

2、事前分析估算方法

在計算機程序編寫前,依據統計方法對演算法進行估算。經過總結,可以發現一個高級語言編寫的程序在計算機上運行時所消耗的時間取決於下列因素:演算法採用的策略、編譯產生的代碼質量、問題的輸入規模、機器執行指令的速度。

參考資料來源:網路-演算法

G. 時間復雜度怎麼計算

1. 一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))
分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
2. 在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n的三次方 次
}
}
則有 T(n)= n的平方+n的三次方,根據上面括弧里的同數量級,我們可以確定 n的三次方 為T(n)的同數量級
則有f(n)= n的三次方,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n的三次方)

H. 數據結構:數據結構在講演算法效率的度量中提到基本操作和原操作,想問一下什麼叫做基本操作什麼叫做原操

度量演算法的效率:時間復雜度、空間復雜度。
時間復雜度,一般情況,演算法中基本操作重復執行的次數是問題規模n的一個函數f(n),演算法的時間度量記做T(n)=O(f(n)),他表示隨著問題規模n的增大,演算法執行時間的增長率和f(n)的增長率相同,稱做演算法的漸近時間復雜度,簡稱時間復雜度。
插入一個概念:語句的頻度指的是該語句重復執行是次數。
我們在計算時間復雜度的時候,
先要找出演算法的基本操作,並根據基本操作語句計算出其執行次數。
再找出其同數量級。。。T(n)=O(f(n)=數量級)。
例如:
[cpp] view plain
for(i=1; i<=n; ++i)
{
for(j=1; j<=n; ++j)
{
c[i][j]=0;//該步驟屬於基本操作執行次數:n的平方次
for(k=1; k<=n; ++k)
c[i][j]+=a[i][k]*b[k][j];//該步驟屬於基本操作執行次數:n的三次方次
}
}

我們可以看到,其中的基本操作語句就只有兩個,一個c[i][j]=0,一個c[i][j]+=a[i][k]*b[k][j],可以知道前一個的執行次數為n^2,後一個的執行次數為n^3。所以T(n)=O(n^3)。
按數量級遞增排列,常見的時間復雜度有:
常數階O(1),對數階O(log2n),線性階O(n),
線性對數階O(nlog2n),平方階O(n^2),立方階O(n^3),...,
k次方階O(n^k),指數階O(2^n)。隨著問題規模n的不斷增大,上訴的時間復雜度不斷增大,演算法的執行效率越低。

在pascal中比較容易理解,容易計算的方法是:看看有幾重for循環,只有一重則時間復雜度為O(n),二重則為O(n^2),依此類推,如果有二分則為O(logn),二分例如快速冪、二分查找,如果一個for循環套一個二分,那麼時間復雜度則為O(nlogn)。

對於實際計算中,我們知道,對於相同的程序,對於其運行的時間,影響的因素有很多。
1.程序的演算法優劣。
2.問題的規模。
3.書寫程序的語言。
4.編譯程序產生的機器代碼在質量。
5.機器執行指令的速度。。。等等。

空間復雜度,一個程序的空間復雜度是指運行完一個程序所需內存的大小。利用程序的空間,可以對程序的運行所需要的內存多少有個預先估計。一個程序執行時除了需要存儲空間和存儲本身所使用的指令、常數、變數和輸入數據外,還需要一些對數據進行操作的工作單元和存儲一些為現實計算所需信息的輔助空間。程序執行時所需存儲空間包括以下兩部分。
(1)固定部分。這部分空間的大小與輸入/輸出的數據的個數多少、數值無關。主要包括指令空間(即代碼空間)、數據空間(常量、簡單變數)等所佔的空間。這部分屬於靜態空間。
(2)可變空間,這部分空間的主要包括動態分配的空間,以及遞歸棧所需的空間等。這部分的空間大小與演算法有關。
一個演算法所需的存儲空間用f(n)表示。
S(n)=O(f(n))
其中n為問題的規模,S(n)表示空間復雜度。

I. 確定下列演算法中語句的執行次數,並給出演算法的時間復雜度

int n=10,cout=0; 執行1次 ,時間復雜度Tn=O(1),
for(int i=1;i<=n;i++) 執行(n+1)次,原操作時間復雜度Tn=O(n) ,
for(int j=1;j<=i;j++) 執行1+2+3+...+n=1/2(n²+n)次, 原操作時間復雜度Tn=O(n²) ,
for(int k=1;k<=j;k++) 執行1+(1+2)+(1+2+3)+...+[1/2(n²+n)]=1/6(n³+3n²+2n)次,n的最高次冪是3,原操作時間復雜度Tn=O(n³),
cout ++;(原操作) 執行1+(1+2)+(1+2+3)+...+[1/2(n²+n)]=1/6(n³+3n²+2n)次,原操作時間復雜度Tn=O(n³)

J. 數據結構的時間復雜程度是怎麼算的啊

時間復雜度
1.時間頻度
一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
2.計算方法
1. 一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n)) 分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。 2. 在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n的三次方 次
}
} 則有 T(n)= n的平方+n的三次方,根據上面括弧里的同數量級,我們可以確定 n的三次方 為T(n)的同數量級
則有f(n)= n的三次方,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n的三次方)
3.分類
按數量級遞增排列,常見的時間復雜度有: 常數階O(1),對數階O(log2n),線性階O(n), 線性對數階O(nlog2n),平方階O(n2),立方階O(n3),..., k次方階O(nk), 指數階O(2n) 。隨著問題規模n的不斷增大,上述時間復雜度不斷增大,演算法的執行效率越低。

閱讀全文

與確定演算法的基本操作次數相關的資料

熱點內容
java單擊事件 瀏覽:641
絕對尺寸編程法 瀏覽:265
伺服器共享文件夾中病毒 瀏覽:35
哪個app會員看綜藝最全 瀏覽:761
程序員朋友圈招聘 瀏覽:339
細細的小木棍怎麼做解壓玩具 瀏覽:36
不要惹程序員的視頻 瀏覽:995
碼高編程如何加盟 瀏覽:756
程序員好處有哪些 瀏覽:954
c語言編譯後的程序 瀏覽:11
公交卡單片機 瀏覽:744
減壓縮軟體下載 瀏覽:299
51單片機復位電路有哪兩種 瀏覽:923
et2008加密狗教程 瀏覽:965
安卓手機用什麼錄制高清視頻 瀏覽:749
cadim命令如何應用 瀏覽:949
免費ntp時鍾伺服器地址 瀏覽:685
域名如何與雲伺服器綁定 瀏覽:808
linuxjava環境搭建教程 瀏覽:128
單片機串口如何引起中斷 瀏覽:272