其實你只要再寫個解密的過程看看加密完能不能還原回去就好了。。解密過程和加密過程基本一樣,就是使用子密鑰時的順序是倒著的。
明文是 testdata,密鑰是mydeskey 正確的des加密後二進制密文:
用base64編碼形成的密文是:4wynQOzDaiA=
解密後:
㈡ 介面測試中的加密演算法如何實現
加密實現對於測試而言,的確是件頭疼的事情,畢竟大多數測試沒有編碼基礎,即便有編程也是短板,要是實現加密演算法的話,主要有兩種方式:
1. 可以以純編碼的方式實現,比如使用 Java 或 Python等
2. 如果是測試工具的話,比如Jmeter,可以求助開發將加密演算法導出為 jar 包,然後我們測試再在 Jmeter 中導入jar包,再調用類似於 BeanShell 取樣器的組件,調用開發提供的加密函數(可以一定程度的減少代碼量) 獲得更多關於測試的知識,建議你去找視頻學習一下,黑馬程序員官網就有很多專業的視頻,應該挺適合你的。
㈢ 如何測試android存儲加密
Android系統中,判斷應用有無安裝有兩種方式: 1.根據包名判斷,以下為判斷代碼: public boolean checkApkExist(Context context, String packageName) { if (packageName == null || 「」.equals(packageName)) return false; try { ApplicationI
㈣ 校驗參數的加密方式及演算法
您好:
1、常用密鑰演算法 :
密鑰演算法用來對敏感數據、摘要、簽名等信息進行加密,常用的密鑰演算法包括:
DES(Data Encryption Standard):數據加密標准,速度較快,適用於加密大量數據的場合; 3DES(Triple DES):是基於DES,對一塊數據用三個不同的密鑰進行三次加密,強度更高;
RC2和 RC4:用變長密鑰對大量數據進行加密,比 DES 快;
IDEA(International Data Encryption Algorithm)國際數據加密演算法,使用 128 位密鑰提供非常強的安全性;
RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件快的長度也是可變的;
DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准);
AES(Advanced Encryption Standard):高級加密標准,是下一代的加密演算法標准,速度快,安全級別高,目前 AES 標準的一個實現是 Rijndael 演算法;
BLOWFISH,它使用變長的密鑰,長度可達448位,運行速度很快;
其它演算法,如ElGamal、Deffie-Hellman、新型橢圓曲線演算法ECC等。
2、單向散列演算法 :
單向散列函數一般用於產生消息摘要,密鑰加密等,常見的有:
MD5(Message Digest Algorithm 5):是RSA數據安全公司開發的一種單向散列演算法,MD5被廣泛使用,可以用來把不同長度的數據塊進行暗碼運算成一個128位的數值;
SHA(Secure Hash Algorithm)這是一種較新的散列演算法,可以對任意長度的數據運算生成一個160位的數值;
MAC(Message Authentication Code):消息認證代碼,是一種使用密鑰的單向函數,可以用它們在系統上或用戶之間認證文件或消息。HMAC(用於消息認證的密鑰散列法)就是這種函數的一個例子。
CRC(Cyclic Rendancy Check):循環冗餘校驗碼,CRC校驗由於實現簡單,檢錯能力強,被廣泛使用在各種數據校驗應用中。佔用系統資源少,用軟硬體均能實現,是進行數據傳輸差錯檢測地一種很好的手段(CRC 並不是嚴格意義上的散列演算法,但它的作用與散列演算法大致相同,所以歸於此類)。
3、其它數據演算法 :
其它數據演算法包括一些常用編碼演算法及其與明文(ASCII、Unicode 等)轉換等,如 Base 64、Quoted Printable、EBCDIC 等。
㈤ 加密演算法速度測試問題!
硬體平台不同、軟體實現方式的差異,結果都不一樣,單純的bps沒有任何意義
㈥ 用Gtest測試md5加密演算法 怎樣寫測試代碼
包含rc4加密演算法的源碼進入你的工程 如果是函數,就直接在你的程序里包含頭文件,然後調用 如果是類,就在你的程序里包含頭文件,定義對象,然後調用
㈦ 典型現在加密演算法
1.
對稱型加密演算法
也稱私用密鑰演算法.對稱型加密演算法是從傳統的簡單換位代替密碼發展而來的,自1977年美國頒布DES密碼演算法作為美國數據加密標准以來,對稱密鑰密碼體制迅猛發展,得到了世界各國關注和普遍使用.對稱密鑰密碼體制從加密模式上可分為序列密碼和分組密碼兩大類.序列密碼一直是軍事和外交場合使用的主要密碼技術之一,它的主要原理是通過有限狀態機產生性能優良的偽隨機序列,使用該序列加密信息流,得到密文序列.分組密碼的工作方式是將明文分成固定長度的組,如64比特一組,用同一密鑰和演算法對每一組加密,輸出也是固定長度的密文.對稱性的加密演算法包括美國標准56位密鑰的DES,Triple-DES,3DES,變長度密鑰的RC2和RC4,瑞士人發明的128位密鑰的IDEA等.DES(Data Encryption Standard)是由IBM公司開發的最著名的數據加密演算法,它的核心是乘積變換.美國於1997年將其定為非機密數據的正式加密標准.在過去20多年中,DES加密演算法得到了廣泛的研究,比其他任何密鑰方案在硬體和軟體中都得到了更多的應用.DES對64位二進制數據加密,產生64位密文數據,實際密鑰長度為56位(有8位用於奇偶校驗,解密時的過程和加密時相似,但密鑰的順序正好相反),其可能的密鑰有256種,很難被破譯.在銀行業中的電子資金轉賬(EFT)領域中DES的應用獲得成功.現在DES也可由硬體實現,AT&T首先用LSI晶元實現了DES的全部工作模式,該產品稱為數據加密處理機DEP.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2.
RC4演算法
RC4加密演算法
RC4加密演算法是大名鼎鼎的RSA三人組中的頭號人物Ron Rivest在1987年設計的密鑰長度可變的流加密演算法簇。之所以稱其為簇,是由於其核心部分的S-box長度可為任意,但一般為256位元組。該演算法的速度可以達到DES加密的10倍左右。
RC4演算法的原理很簡單,包括初始化演算法和偽隨機子密碼生成演算法兩大部分。假設S-box長度和密鑰長度均為為n。先來看看演算法的初始化部分(用類C偽代碼表示):
for (i=0; i<n; i++)
s[i]=i;
j=0;
for (i=0; i<n; i++)
{
j=(j+s[i]+k[i])%256;
swap(s[i], s[j]);
}
在初始化的過程中,密鑰的主要功能是將S-box攪亂,i確保S-box的每個元素都得到處理,j保證S-box的攪亂是隨機的。而不同的S-box在經過偽隨機子密碼生成演算法的處理後可以得到不同的子密鑰序列,並且,該序列是隨機的:
i=j=0;
while (明文未結束)
{
++i%=n;
j=(j+s[i])%n;
swap(s[i], s[j]);
sub_k=s((s[i]+s[j])%n);
}
得到的子密碼sub_k用以和明文進行xor運算,得到密文,解密過程也完全相同。
由於RC4演算法加密是採用的xor,所以,一旦子密鑰序列出現了重復,密文就有可能被破解。關於如何破解xor加密,請參看Bruce Schneier的Applied Cryptography一書的1.4節Simple XOR,在此我就不細說了。那麼,RC4演算法生成的子密鑰序列是否會出現重復呢?經過我的測試,存在部分弱密鑰,使得子密鑰序列在不到100萬位元組內就發生了完全的重復,如果是部分重復,則可能在不到10萬位元組內就能發生重復,因此,推薦在使用RC4演算法時,必須對加密密鑰進行測試,判斷其是否為弱密鑰。
但在2001年就有以色列科學家指出RC4加密演算法存在著漏洞,這可能對無線通信網路的安全構成威脅。
以色列魏茨曼研究所和美國思科公司的研究者發現,在使用「有線等效保密規則」(WEP)的無線網路中,在特定情況下,人們可以逆轉RC4演算法的加密過程,獲取密鑰,從而將己加密的信息解密。實現這一過程並不復雜,只需要使用一台個人電腦對加密的數據進行分析,經過幾個小時的時間就可以破譯出信息的全部內容。
專家說,這並不表示所有使用RC4演算法的軟體都容易泄密,但它意味著RC4演算法並不像人們原先認為的那樣安全。這一發現可能促使人們重新設計無線通信網路,並且使用新的加密演算法。
㈧ 誰幫我介紹下加密對稱演算法
A.對稱加密技術 a. 描述 對稱演算法(symmetric algorithm),有時又叫傳統密碼演算法,就是加密密鑰能夠從解密密鑰中推算出來,同時解密密鑰也可以從加密密鑰中推算出來。而在大多數的對稱演算法中,加密密鑰和解密密鑰是相同的。所以也稱這種加密演算法為秘密密鑰演算法或單密鑰演算法。它要求發送方和接收方在安全通信之前,商定一個密鑰。對稱演算法的安全性依賴於密鑰,泄漏密鑰就意味著任何人都可以對他們發送或接收的消息解密,所以密鑰的保密性對通信性至關重要。 b.特點分析 對稱加密的優點在於演算法實現後的效率高、速度快。 對稱加密的缺點在於密鑰的管理過於復雜。如果任何一對發送方和接收方都有他們各自商議的密鑰的話,那麼很明顯,假設有N個用戶進行對稱加密通信,如果按照上述方法,則他們要產生N(N-1)把密鑰,每一個用戶要記住或保留N-1把密鑰,當N很大時,記住是不可能的,而保留起來又會引起密鑰泄漏可能性的增加。常用的對稱加密演算法有DES,DEA等。 B.非對稱加密技術 a.描述 非對稱加密(dissymmetrical encryption),有時又叫公開密鑰演算法(public key algorithm)。這種加密演算法是這樣設計的:用作加密的密鑰不同於用作解密的密鑰,而且解密密鑰不能根據加密密鑰計算出來(至少在合理假定的長時間內)。之所以又叫做公開密鑰演算法是由於加密密鑰可以公開,即陌生人可以得到它並用來加密信息,但只有用相應的解密密鑰才能解密信息。在這種加密演算法中,加密密鑰被叫做公開密鑰(public key),而解密密鑰被叫做私有密鑰(private key)。 b.特點分析 非對稱加密的缺點在於演算法實現後的效率低、速度慢。 非對稱加密的優點在於用戶不必記憶大量的提前商定好的密鑰,因為發送方和接收方事先根本不必商定密鑰,發放方只要可以得到可靠的接收方的公開密鑰就可以給他發送信息了,而且即使雙方根本互不相識。但為了保證可靠性,非對稱加密演算法需要一種與之相配合使用的公開密鑰管理機制,這種公開密鑰管理機制還要解決其他一些公開密鑰所帶來的問題。常用的非對稱加密演算法有RSA等。 (3) 關於密碼技術 密碼技術包括加密技術和密碼分析技術,也即加密和解密技術兩個方面。在一個新的加密演算法的研發需要有相應的數學理論證明,證明這個演算法的安全性有多高,同時還要從密碼分析的角度對這個演算法進行安全證明,說明這個演算法對於所知的分析方法來說是有防範作用的。 三、對稱加密演算法分析 對稱加密演算法的分類 對稱加密演算法可以分成兩類:一類為序列演算法(stream algorithm):一次只對明文中單個位(有時為位元組)加密或解密運算。另一類為分組演算法(block algorithm):一次明文的一組固定長度的位元組加密或解密運算。 現代計算機密碼演算法一般採用的都是分組演算法,而且一般分組的長度為64位,之所以如此是由於這個長度大到足以防止分析破譯,但又小到足以方便使用。 1.DES加密演算法 (Data Encryption Standard )
(1) 演算法簡介
1973 年 5 月 15 日,美國國家標准局 (NBS) 在「聯邦注冊」上發布了一條通知,徵求密碼演算法,用於在傳輸和存儲期間保護數據。IBM 提交了一個候選演算法,它是 IBM 內部開發的,名為 LUCIFER。在美國國家安全局 (NSA) 的「指導」下完成了演算法評估之後,在 1977 年 7 月 15 日,NBS 採納了 LUCIFER 演算法的修正版作為新的數據加密標准。
原先規定使用10年,但由於新的加密標准還沒有完成,所以DES演算法及其的變形演算法一直廣泛的應用於信息加密方面。 (2) 演算法描述 (包括加密和解密)
Feistel結構(畫圖說明)。
DES 的工作方式:可怕的細節
DES 將消息分成 64 位(即 16 個十六進制數)一組進行加密。DES 使用「密鑰」進行加密,從符號的角度來看,「密鑰」的長度是 16 個十六進制數(或 64 位)。但是,由於某些原因(可能是因為 NSA 給 NBS 的「指引」),DES 演算法中每逢第 8 位就被忽略。這造成密鑰的實際大小變成 56 位。編碼系統對「強行」或「野蠻」攻擊的抵抗力與其密鑰空間或者系統可能有多少密鑰有直接關系。使用的位數越多轉換出的密鑰也越多。密鑰越多,就意味著強行攻擊中計算密鑰空間中可能的密鑰范圍所需的時間就越長。從總長度中切除 8 位就會在很大程度上限制了密鑰空間,這樣系統就更容易受到破壞。
DES 是塊加密演算法。這表示它處理特定大小的純文本塊(通常是 64 位),然後返回相同大小的密碼塊。這樣,64 位(每位不是 0 就是 1)有 264 種可能排列,DES 將生成其中的一種排列。每個 64 位的塊都被分成 L、R 左右兩塊,每塊 32 位。
DES 演算法使用以下步驟:
1. 創建 16 個子密鑰,每個長度是 48 位。根據指定的順序或「表」置換 64 位的密鑰。如果表中的第一項是 "27",這表示原始密鑰 K 中的第 27 位將變成置換後的密鑰 K+ 的第一位。如果表的第二項是 36,則這表示原始密鑰中的第 36 位將變成置換後密鑰的第二位,以此類推。這是一個線性替換方法,它創建了一種線性排列。置換後的密鑰中只出現了原始密鑰中的 56 位。
2. 接著,將這個密鑰分成左右兩半,C0 和 D0,每一半 28 位。定義了 C0 和 D0 之後,創建 16 個 Cn 和 Dn 塊,其中 1<=n<=16。每一對 Cn 和 Dn 塊都通過使用標識「左移位」的表分別從前一對 Cn-1 和 Dn-1 形成,n = 1, 2, ..., 16,而「左移位」表說明了要對哪一位進行操作。在所有情況下,單一左移位表示這些位輪流向左移動一個位置。在一次左移位之後,28 個位置中的這些位分別是以前的第 2、3……28 位。
通過將另一個置換表應用於每一個 CnDn 連接對,從而形成密鑰 Kn,1<=n<=16。每一對有 56 位,而置換表只使用其中的 48 位,因為每逢第 8 位都將被忽略。
3. 編碼每個 64 位的數據塊。
64 位的消息數據 M 有一個初始置換 IP。這將根據置換表重新排列這些位,置換表中的項按這些位的初始順序描述了它們新的排列。我們以前見過這種線性表結構。
使用函數 f 來生成一個 32 位的塊,函數 f 對兩個塊進行操作,一個是 32 位的數據塊,一個是 48 位的密鑰 Kn,連續迭代 16 次,其中 1<=n<=16。用 + 表示 XOR 加法(逐位相加,模除 2)。然後,n 從 1 到 16,計算 Ln = Rn-1 Rn = Ln-1 + f(Rn-1,Kn)。即在每次迭代中,我們用前一結果的右邊 32 位,並使它們成為當前步驟中的左邊 32 位。對於當前步驟中的右邊 32 位,我們用演算法 f XOR 前一步驟中的左邊 32 位。
要計算 f,首先將每一塊 Rn-1 從 32 位擴展到 48 位。可以使用選擇表來重復 Rn-1 中的一些位來完成這一操作。這個選擇表的使用就成了函數 f。因此 f(Rn-1) 的輸入塊是 32 位,輸出塊是 48 位。f 的輸出是 48 位,寫成 8 塊,每塊 6 位,這是通過根據已知表按順序選擇輸入中的位來實現的。
我們已經使用選擇表將 Rn-1 從 32 位擴展成 48 位,並將結果 XOR 密鑰 Kn。現在有 48 位,或者是 8 組,每組 6 位。每組中的 6 位現在將經歷一次變換,該變換是演算法的核心部分:在叫做「S 盒」的表中,我們將這些位當作地址使用。每組 6 位在不同的 S 盒中表示不同的地址。該地址中是一個 4 位數字,它將替換原來的 6 位。最終結果是 8 組,每組 6 位變換成 8 組,每組 4 位(S 盒的 4 位輸出),總共 32 位。
f 計算的最後階段是對 S 盒輸出執行置換 P,以得到 f 的最終值。f 的形式是 f = P(S1(B1)S2(B2)...S8(B8))。置換 P 根據 32 位輸入,在以上的過程中通過置換輸入塊中的位,生成 32 位輸出。
解密只是加密的逆過程,使用以上相同的步驟,但要逆轉應用子密鑰的順序。DES 演算法是可逆的
(2) 演算法的安全性分析
在知道一些明文和密文分組的條件下,從理論上講很容易知道對DES進行一次窮舉攻擊的復雜程度:密鑰的長度是56位,所以會有 種的可能的密鑰。
在1993年的一年一度的世界密碼大會上,加拿大北方電信公司貝爾實驗室的 Michael Wiener 描述了如何構造一台專用的機器破譯DES,該機器利用一種每秒能搜索5000萬個密鑰的專用晶元。而且此機器的擴展性很好,投入的經費越多則效率越高。用100萬美元構造的機器平均3.5小時就可以破譯密碼。
如果不用專用的機器,破譯DES也有其他的方法。在1994年的世界密碼大會上,M.Matsui 提出一種攻克DES的新方法--"線性密碼分析"法。它可使用平均 個明文及其密文,在12台HP9000/735工作站上用此方法的軟體實現,花費50天時間完成對DES的攻擊。
如前所述DES作為加密演算法的標准已經二十多年了,可以說是一個很老的演算法,而在新的加密演算法的國際標准出現之前,許多DES的加固性改進演算法仍有實用價值,在本文的3.4節詳細的描述,同時考慮的以上所述DES的安全性已受到了威脅。
(4) 演算法的變體 三重DES(TDEA),使用3個密鑰,執行3次DES演算法:
加密:C = Ek3[Dk2[Ek1[P]]] 解密:P = Dk1[Ek2[Dk3[C]]]
特點:安全性得到增強,但是速度變慢。
2.AES
自 20 世紀 70 年代以來一直廣泛使用的「數據加密標准」(DES) 日益顯出衰老的痕跡,而一種新的演算法 -- Rijndael -- 正順利地逐漸變成新標准。這里,Larry Loeb 詳細說明了每一種演算法,並提供了關於為什麼會發生這種變化的內幕信息。
DES 演算法是全世界最廣泛使用的加密演算法。最近,就在 2000 年 10 月,它在其初期就取得的硬體方面的優勢已經阻礙了其發展,作為政府加密技術的基礎,它已由「高級加密標准」(AES) 中包含的另一種加密演算法代替了。AES 是指定的標准密碼系統,未來將由政府和銀行業用戶使用。AES 用來實際編碼數據的加密演算法與以前的 DES 標准不同。我們將討論這是如何發生的,以及 AES 中的 Rijndael 演算法是如何取代 DES 的演算法的。
「高級加密標准」成就
但直到 1997 年,美國國家標准技術局 (NIST) 才開始打著 AES 項目的旗幟徵集其接任者。1997 年 4 月的一個 AES 研討會宣布了以下 AES 成就的最初目標:
• 可供政府和商業使用的功能強大的加密演算法
• 支持標准密碼本方式
• 要明顯比 DES 3 有效
• 密鑰大小可變,這樣就可在必要時增加安全性
• 以公正和公開的方式進行選擇
• 可以公開定義
• 可以公開評估
AES 的草案中最低可接受要求和評估標準是:
A.1 AES 應該可以公開定義。
A.2 AES 應該是對稱的塊密碼。
A.3 AES 應該設計成密鑰長度可以根據需要增加。
A.4 AES 應該可以在硬體和軟體中實現。
A.5 AES 應該 a) 可免費獲得。
A.6 將根據以下要素評價符合上述要求的演算法:
1. 安全性(密碼分析所需的努力)
2. 計算效率
3. 內存需求
4. 硬體和軟體可適用性
5. 簡易性
6. 靈活性
7. 許可證需求(見上面的 A5)
Rijndael:AES 演算法獲勝者
1998年8月20日NIST召開了第一次AES侯選會議,並公布了15個AES侯選演算法。經過一年的考察,MARS,RC6,Rijndael,Serpent,Twofish共5種演算法通過了第二輪的選拔。2000 年 10 月,NIST 選擇 Rijndael(發音為 "Rhine dale")作為 AES 演算法。它目前還不會代替 DES 3 成為政府日常加密的方法,因為它還須通過測試過程,「使用者」將在該測試過程後發表他們的看法。但相信它可以順利過關。
Rijndael 是帶有可變塊長和可變密鑰長度的迭代塊密碼。塊長和密鑰長度可以分別指定成 128、192 或 256 位。
Rijndael 中的某些操作是在位元組級上定義的,位元組表示有限欄位 GF(28) 中的元素,一個位元組中有 8 位。其它操作都根據 4 位元組字定義。
加法照例對應於位元組級的簡單逐位 EXOR。
在多項式表示中,GF(28) 的乘法對應於多項式乘法模除階數為 8 的不可約分二進制多項式。(如果一個多項式除了 1 和它本身之外沒有其它約數,則稱它為不可約分的。)對於 Rijndael,這個多項式叫做 m(x),其中:m(x) = (x8 + x4 + x3 + x + 1) 或者十六進製表示為 '11B'。其結果是一個階數低於 8 的二進制多項式。不像加法,它沒有位元組級的簡單操作。
不使用 Feistel 結構!
在大多數加密演算法中,輪回變換都使用著名的 Feistel 結構。在這個結構中,中間 State 的位部分通常不做更改調換到另一個位置。(這種線性結構的示例是我們在 DES 部分中討論的那些表,即使用固定表的形式交換位。)Rijndael 的輪回變換不使用這個古老的 Feistel 結構。輪回變換由三個不同的可逆一致變換組成,叫做層。(「一致」在這里表示以類似方法處理 State 中的位。)
線性混合層保證了在多個輪回後的高度擴散。非線性層使用 S 盒的並行應用,該應用程序有期望的(因此是最佳的)最差非線性特性。S 盒是非線性的。依我看來,這就 DES 和 Rijndael 之間的密鑰概念差異。密鑰加法層是對中間 State 的輪回密鑰 (Round Key) 的簡單 EXOR,如以下所注。
Rijndael演算法
加密演算法
Rijndael演算法是一個由可變數據塊長和可變密鑰長的迭代分組加密演算法,數據塊長和密鑰長可分別為128,192或256比特。
數據塊要經過多次數據變換操作,每一次變換操作產生一個中間結果,這個中間結果叫做狀態。狀態可表示為二維位元組數組,它有4行,Nb列,且Nb等於數據塊長除32。如表2-3所示。
a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5
數據塊按a0,0 , a1,0 , a2,0 , a3,0 , a0,1 , a1,1 , a2,1 , a3,1 , a0,2…的順序映射為狀態中的位元組。在加密操作結束時,密文按同樣的順序從狀態中抽取。
密鑰也可類似地表示為二維位元組數組,它有4行,Nk列,且Nk等於密鑰塊長除32。演算法變換的圈數Nr由Nb和Nk共同決定,具體值列在表2-4中。
表3-2 Nb和Nk決定的Nr的值
Nr Nb = 4 Nb = 6 Nb = 8
Nk = 4 10 12 14
Nk = 6 12 12 14
Nk = 8 14 14 14
3.2.1圈變換
加密演算法的圈變換由4個不同的變換組成,定義成:
Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey); (EXORing a Round Key to the State)
}
加密演算法的最後一圈變換與上面的略有不同,定義如下:
FinalRound(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
AddRoundKey(State,RoundKey);
}
ByteSub變換
ByteSub變換是作用在狀態中每個位元組上的一種非線形位元組變換。這個S盒子是可逆的且由以下兩部分組成:
把位元組的值用它的乘法逆替代,其中『00』的逆就是它自己。
經(1)處理後的位元組值進行如下定義的仿射變換:
y0 1 1 1 1 1 0 0 0 x0 0
y1 0 1 1 1 1 1 0 0 x1 1
y2 0 0 1 1 1 1 1 0 x2 1
y3 0 0 0 1 1 1 1 1 x3 0
y4 = 1 0 0 0 1 1 1 1 x4 + 0
y5 1 1 0 0 0 1 1 1 x5 0
y6 1 1 1 0 0 0 1 1 x6 1
y7 1 1 1 1 0 0 0 1 x7 1
ShiftRow變換
在ShiftRow變換中,狀態的後3行以不同的移位值循環右移,行1移C1位元組,行2移C2位元組,行3移C3位元組。
移位值C1,C2和C3與加密塊長Nb有關,具體列在表2-5中:
表3-3 不同塊長的移位值
Nb C1 C2 C3
4 1 2 3
MixColumn變換
在MixColumn變換中,把狀態中的每一列看作GF(28)上的多項式與一固定多項式c(x)相乘然後模多項式x4+1,其中c(x)為:
c(x) =『03』x3 + 『01』x2 + 『01』x + 『02』
圈密鑰加法
在這個操作中,圈密鑰被簡單地使用異或操作按位應用到狀態中。圈密鑰通過密鑰編製得到,圈密鑰長等於數據塊長Nb。
在這個表示法中,「函數」(Round, ByteSub, ShiftRow,...) 對那些被提供指針 (State, RoundKey) 的數組進行操作。ByteSub 變換是非線性位元組交換,各自作用於每個 State 位元組上。在 ShiftRow 中,State 的行按不同的偏移量循環移位。在 MixColumn 中,將 State 的列視為 GF(28) 多項式,然後乘以固定多項式 c( x ) 並模除 x4 + 1,其中 c( x ) = '03' x3 + '01' x2+ '01' x + '02'。這個多項式與 x4 + 1 互質,因此是可逆的。
輪回密鑰通過密鑰計劃方式從密碼密鑰 (Cipher Key) 派生而出。它有兩個組件:密鑰擴展 (Key Expansion) 和輪回密鑰選擇 (Round Key Selection)。輪回密鑰的總位數等於塊長度乘以輪回次數加 1(例如,塊長度等於 128 位,10 次輪回,那麼就需要 1408 個輪回密鑰位)。
密碼密鑰擴充成擴展密鑰 (Expanded Key)。輪回密鑰是通過以下方法從這個擴展密鑰中派生的:第一個輪回密鑰由前 Nb(Nb = 塊長度)個字組成,第二個由接著的 Nb 個字組成,以此類推。
加密演算法由以下部分組成:初始輪回密鑰加法、Nr-1 個輪回和最後一個輪回。在偽 C 代碼中:
Rijndael(State,CipherKey)
{
KeyExpansion(CipherKey,ExpandedKey);
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr).
}
如果已經預先執行了密鑰擴展,則可以根據擴展密鑰指定加密演算法。
Rijndael(State,ExpandedKey)
{
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr);
}
由於 Rijndael 是可逆的,解密過程只是顛倒上述的步驟。
最後,開發者將仔細考慮如何集成這種安全性進展,使之成為繼 Rijndael 之後又一個得到廣泛使用的加密演算法。AES 將很快應一般商業團體的要求取代 DES 成為標准,而該領域的發展進步無疑將追隨其後。
3.IDEA加密演算法 (1) 演算法簡介 IDEA演算法是International Data Encryption Algorithmic 的縮寫,意為國際數據加密演算法。是由中國學者朱學嘉博士和著名密碼學家James Massey 於1990年聯合提出的,當時被叫作PES(Proposed Encryption Standard)演算法,後為了加強抵抗差分密碼分,經修改於1992年最後完成,並命名為IDEA演算法。 (2) 演算法描述 這個部分參見論文上的圖 (3) 演算法的安全性分析 安全性:IDEA的密鑰長度是128位,比DES長了2倍多。所以如果用窮舉強行攻擊的話, 么,為了獲得密鑰需要 次搜索,如果可以設計一種每秒能搜索十億把密鑰的晶元,並且 採用十億個晶元來並行處理的話,也要用上 年。而對於其他攻擊方式來說,由於此演算法 比較的新,在設計時已經考慮到了如差分攻擊等密碼分析的威脅,所以還未有關於有誰 發現了能比較成功的攻擊IDEA方法的結果。從這點來看,IDEA還是很安全的。
4.總結
幾種演算法的性能對比
演算法 密鑰長度 分組長度 循環次數
DES 56 64 16
三重DES 112、168 64 48
AES 128、192、256 128 10、12、14
IDEA 128 64 8
速度:在200MHz的奔騰機上的對比。
C++ DJGP(++pgcc101)
AES 30.2Mbps 68.275Mbps
DES(RSAREF) 10.6Mbps 16.7Mbps
3DES 4.4Mbps 7.3Mbps
Celeron 1GHz的機器上AES的速度,加密內存中的數據
128bits密鑰:
C/C++ (Mbps) 匯編(Mbps)
Linux 2.4.7 93 170
Windows2K 107 154
256bits密鑰:
C/C++ (Mbps) 匯編(Mbps)
Linux 2.4.7 76 148
Windows2K 92 135
安全性
1990年以來,特製的"DES Cracker"的機器可在幾個小時內找出一個DES密鑰。換句話說,通過測試所有可能的密鑰值,此硬體可以確定用於加密信息的是哪個密鑰。假設一台一秒內可找出DES密鑰的機器(如,每秒試255個密鑰),如果用它來找出128-bit AES的密鑰,大約需要149萬億年。
四、對稱加密應用 在保密通信中的應用。(保密電話) 附加內容
安全哈希演算法(SHA)
由NIST開發出來的。
此演算法以最大長度不超過264位的消息為輸入,生成160位的消息摘要輸出。主要步驟:
1. 附加填充位
2. 附加長度
3. 初始化MD緩沖區,為160位的數據
A=67452301
B=EFCDAB89
C=89BADCFE
D=10325476
E=C3D2E1F0
4. 處理512位消息塊,將緩沖虛數據和消息塊共同計算出下一個輸出
5. 輸出160位摘要
此外還有其他哈希演算法,如MD5(128位摘要),RIPEMD-160(160位摘要)等。
㈨ WIFI用什麼加密演算法
目前,無線網路中已存在好幾種加密技術,由於安全性能的不同,無線設備的不同技術支持,支持的加密技術也不同, 一般常見的有:WEP、WPA/WPA2、WPA-PSK/WPA2-PSK。
1、WEP安全加密方式
WEP(有線等效保密),一種數據加密演算法,用於提供等同於有線區域網的保護能力。它的安全技術源自於名為RC4的RSA數據加密技術,是無線區域網WLAN的必要的安全防護層。目前常見的是64位WEP加密和128位WEP加密。
2、WPA安全加密方式
WEP之後,人們將期望轉向了其升級後的WPA,與之前WEP的靜態密鑰不同,WPA需要不斷的轉換密鑰。
WPA採用有效的密鑰分發機制,可以跨越不同廠商的無線網卡實現應用,其作為WEP的升級版,在安全的防護上比WEP更為周密,主要體現在身份認證、加密機制和數據包檢查等方面,而且它還提升了無線網路的管理能力。
3、WAP2
WPA2是IEEE 802.11i標準的認證形式,WPA2實現了802.11i的強制性元素,特別是Michael演算法被公認徹底安全的CCMP(計數器模式密碼塊鏈消息完整碼協議)訊息認證碼所取代、而RC4加密演算法也被AES所取代。
目前WPA2加密方式的安全防護能力相對出色,只要用戶的無線網路設備均能夠支持WPA2加密,那麼恭喜,無線網路處於一個非常安全的境地。
(9)加密演算法測試擴展閱讀
WPA/WPA2是一種最安全的加密類型,不過由於此加密類型需要安裝Radius伺服器,因此,一般普通用戶都用不到,只有企業用戶為了無線加密更安全才會使用此種加密方式,在設備連接無線WIFI時需要Radius伺服器認證,而且還需要輸入Radius密碼。
WPA-PSK/WPA2-PSK是我們現在經常設置的加密類型,這種加密類型安全性能高,而且設置也相當簡單,不過需要注意的是它有AES和TKIP兩種加密演算法。
㈩ 加密解密字元串的演算法原理
我們經常需要一種措施來保護我們的數據,防止被一些懷有不良用心的人所看到或者破壞。在信息時代,信息可以幫助團體或個人,使他們受益,同樣,信息也可以用來對他們構成威脅,造成破壞。在競爭激烈的大公司中,工業間諜經常會獲取對方的情報。因此,在客觀上就需要一種強有力的安全措施來保護機密數據不被竊取或篡改。數據加密與解密從宏觀上講是非常簡單的,很容易理解。加密與解密的一些方法是非常直接的,很容易掌握,可以很方便的對機密數據進行加密和解密。
一:數據加密方法
在傳統上,我們有幾種方法來加密數據流。所有這些方法都可以用軟體很容易的實現,但是當我們只知道密文的時候,是不容易破譯這些加密演算法的(當同時有原文和密文時,破譯加密演算法雖然也不是很容易,但已經是可能的了)。最好的加密演算法對系統性能幾乎沒有影響,並且還可以帶來其他內在的優點。例如,大家都知道的pkzip,它既壓縮數據又加密數據。又如,dbms的一些軟體包總是包含一些加密方法以使復制文件這一功能對一些敏感數據是無效的,或者需要用戶的密碼。所有這些加密演算法都要有高效的加密和解密能力。
幸運的是,在所有的加密演算法中最簡單的一種就是「置換表」演算法,這種演算法也能很好達到加密的需要。每一個數據段(總是一個位元組)對應著「置換表」中的一個偏移量,偏移量所對應的值就輸出成為加密後的文件。加密程序和解密程序都需要一個這樣的「置換表」。事實上,80x86 cpu系列就有一個指令『xlat』在硬體級來完成這樣的工作。這種加密演算法比較簡單,加密解密速度都很快,但是一旦這個「置換表」被對方獲得,那這個加密方案就完全被識破了。更進一步講,這種加密演算法對於黑客破譯來講是相當直接的,只要找到一個「置換表」就可以了。這種方法在計算機出現之前就已經被廣泛的使用。
對這種「置換表」方式的一個改進就是使用2個或者更多的「置換表」,這些表都是基於數據流中位元組的位置的,或者基於數據流本身。這時,破譯變的更加困難,因為黑客必須正確的做幾次變換。通過使用更多的「置換表」,並且按偽隨機的方式使用每個表,這種改進的加密方法已經變的很難破譯。比如,我們可以對所有的偶數位置的數據使用a表,對所有的奇數位置使用b表,即使黑客獲得了明文和密文,他想破譯這個加密方案也是非常困難的,除非黑客確切的知道用了兩張表。
與使用「置換表」相類似,「變換數據位置」也在計算機加密中使用。但是,這需要更多的執行時間。從輸入中讀入明文放到一個buffer中,再在buffer中對他們重排序,然後按這個順序再輸出。解密程序按相反的順序還原數據。這種方法總是和一些別的加密演算法混合使用,這就使得破譯變的特別的困難,幾乎有些不可能了。例如,有這樣一個詞,變換起字母的順序,slient 可以變為listen,但所有的字母都沒有變化,沒有增加也沒有減少,但是字母之間的順序已經變化了。
但是,還有一種更好的加密演算法,只有計算機可以做,就是字/位元組循環移位和xor操作。如果我們把一個字或位元組在一個數據流內做循環移位,使用多個或變化的方向(左移或右移),就可以迅速的產生一個加密的數據流。這種方法是很好的,破譯它就更加困難!而且,更進一步的是,如果再使用xor操作,按位做異或操作,就就使破譯密碼更加困難了。如果再使用偽隨機的方法,這涉及到要產生一系列的數字,我們可以使用fibbonaci數列。對數列所產生的數做模運算(例如模3),得到一個結果,然後循環移位這個結果的次數,將使破譯次密碼變的幾乎不可能!但是,使用fibbonaci數列這種偽隨機的方式所產生的密碼對我們的解密程序來講是非常容易的。
在一些情況下,我們想能夠知道數據是否已經被篡改了或被破壞了,這時就需要產生一些校驗碼,並且把這些校驗碼插入到數據流中。這樣做對數據的防偽與程序本身都是有好處的。但是感染計算機程序的病毒才不會在意這些數據或程序是否加過密,是否有數字簽名。所以,加密程序在每次load到內存要開始執行時,都要檢查一下本身是否被病毒感染,對與需要加、解密的文件都要做這種檢查!很自然,這樣一種方法體制應該保密的,因為病毒程序的編寫者將會利用這些來破壞別人的程序或數據。因此,在一些反病毒或殺病毒軟體中一定要使用加密技術。
循環冗餘校驗是一種典型的校驗數據的方法。對於每一個數據塊,它使用位循環移位和xor操作來產生一個16位或32位的校驗和 ,這使得丟失一位或兩個位的錯誤一定會導致校驗和出錯。這種方式很久以來就應用於文件的傳輸,例如 xmodem-crc。 這是方法已經成為標准,而且有詳細的文檔。但是,基於標准crc演算法的一種修改演算法對於發現加密數據塊中的錯誤和文件是否被病毒感染是很有效的。
二.基於公鑰的加密演算法
一個好的加密演算法的重要特點之一是具有這種能力:可以指定一個密碼或密鑰,並用它來加密明文,不同的密碼或密鑰產生不同的密文。這又分為兩種方式:對稱密鑰演算法和非對稱密鑰演算法。所謂對稱密鑰演算法就是加密解密都使用相同的密鑰,非對稱密鑰演算法就是加密解密使用不同的密鑰。非常著名的pgp公鑰加密以及rsa加密方法都是非對稱加密演算法。加密密鑰,即公鑰,與解密密鑰,即私鑰,是非常的不同的。從數學理論上講,幾乎沒有真正不可逆的演算法存在。例如,對於一個輸入『a』執行一個操作得到結果『b』,那麼我們可以基於『b』,做一個相對應的操作,導出輸入『a』。在一些情況下,對於每一種操作,我們可以得到一個確定的值,或者該操作沒有定義(比如,除數為0)。對於一個沒有定義的操作來講,基於加密演算法,可以成功地防止把一個公鑰變換成為私鑰。因此,要想破譯非對稱加密演算法,找到那個唯一的密鑰,唯一的方法只能是反復的試驗,而這需要大量的處理時間。
rsa加密演算法使用了兩個非常大的素數來產生公鑰和私鑰。即使從一個公鑰中通過因數分解可以得到私鑰,但這個運算所包含的計算量是非常巨大的,以至於在現實上是不可行的。加密演算法本身也是很慢的,這使得使用rsa演算法加密大量的數據變的有些不可行。這就使得一些現實中加密演算法都基於rsa加密演算法。pgp演算法(以及大多數基於rsa演算法的加密方法)使用公鑰來加密一個對稱加密演算法的密鑰,然後再利用一個快速的對稱加密演算法來加密數據。這個對稱演算法的密鑰是隨機產生的,是保密的,因此,得到這個密鑰的唯一方法就是使用私鑰來解密。
我們舉一個例子:假定現在要加密一些數據使用密鑰『12345』。利用rsa公鑰,使用rsa演算法加密這個密鑰『12345』,並把它放在要加密的數據的前面(可能後面跟著一個分割符或文件長度,以區分數據和密鑰),然後,使用對稱加密演算法加密正文,使用的密鑰就是『12345』。當對方收到時,解密程序找到加密過的密鑰,並利用rsa私鑰解密出來,然後再確定出數據的開始位置,利用密鑰『12345』來解密數據。這樣就使得一個可靠的經過高效加密的數據安全地傳輸和解密。
一些簡單的基於rsa演算法的加密演算法可在下面的站點找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa
三.一個嶄新的多步加密演算法
現在又出現了一種新的加密演算法,據說是幾乎不可能被破譯的。這個演算法在1998年6月1日才正式公布的。下面詳細的介紹這個演算法:
使用一系列的數字(比如說128位密鑰),來產生一個可重復的但高度隨機化的偽隨機的數字的序列。一次使用256個表項,使用隨機數序列來產生密碼轉表,如下所示:
把256個隨機數放在一個距陣中,然後對他們進行排序,使用這樣一種方式(我們要記住最初的位置)使用最初的位置來產生一個表,隨意排序的表,表中的數字在0到255之間。如果不是很明白如何來做,就可以不管它。但是,下面也提供了一些原碼(在下面)是我們明白是如何來做的。現在,產生了一個具體的256位元組的表。讓這個隨機數產生器接著來產生這個表中的其餘的數,以至於每個表是不同的。下一步,使用"shotgun technique"技術來產生解碼表。基本上說,如果 a映射到b,那麼b一定可以映射到a,所以b[a[n]] = n.(n是一個在0到255之間的數)。在一個循環中賦值,使用一個256位元組的解碼表它對應於我們剛才在上一步產生的256位元組的加密表。
使用這個方法,已經可以產生這樣的一個表,表的順序是隨機,所以產生這256個位元組的隨機數使用的是二次偽隨機,使用了兩個額外的16位的密碼.現在,已經有了兩張轉換表,基本的加密解密是如下這樣工作的。前一個位元組密文是這個256位元組的表的索引。或者,為了提高加密效果,可以使用多餘8位的值,甚至使用校驗和或者crc演算法來產生索引位元組。假定這個表是256*256的數組,將會是下面的樣子:
crypto1 = a[crypto0][value]
變數'crypto1'是加密後的數據,'crypto0'是前一個加密數據(或著是前面幾個加密數據的一個函數值)。很自然的,第一個數據需要一個「種子」,這個「種子」 是我們必須記住的。如果使用256*256的表,這樣做將會增加密文的長度。或者,可以使用你產生出隨機數序列所用的密碼,也可能是它的crc校驗和。順便提及的是曾作過這樣一個測試: 使用16個位元組來產生表的索引,以128位的密鑰作為這16個位元組的初始的"種子"。然後,在產生出這些隨機數的表之後,就可以用來加密數據,速度達到每秒鍾100k個位元組。一定要保證在加密與解密時都使用加密的值作為表的索引,而且這兩次一定要匹配。
加密時所產生的偽隨機序列是很隨意的,可以設計成想要的任何序列。沒有關於這個隨機序列的詳細的信息,解密密文是不現實的。例如:一些ascii碼的序列,如「eeeeeeee"可能被轉化成一些隨機的沒有任何意義的亂碼,每一個位元組都依賴於其前一個位元組的密文,而不是實際的值。對於任一個單個的字元的這種變換來說,隱藏了加密數據的有效的真正的長度。
如果確實不理解如何來產生一個隨機數序列,就考慮fibbonacci數列,使用2個雙字(64位)的數作為產生隨機數的種子,再加上第三個雙字來做xor操作。 這個演算法產生了一系列的隨機數。演算法如下:
unsigned long dw1, dw2, dw3, dwmask;
int i1;
unsigned long arandom[256];
dw1 = {seed #1};
dw2 = {seed #2};
dwmask = {seed #3};
// this gives you 3 32-bit "seeds", or 96 bits total
for(i1=0; i1 < 256; i1++)
{
dw3 = (dw1 + dw2) ^ dwmask;
arandom[i1] = dw3;
dw1 = dw2;
dw2 = dw3;
}
如果想產生一系列的隨機數字,比如說,在0和列表中所有的隨機數之間的一些數,就可以使用下面的方法:
int __cdecl mysortproc(void *p1, void *p2)
{
unsigned long **pp1 = (unsigned long **)p1;
unsigned long **pp2 = (unsigned long **)p2;
if(**pp1 < **pp2)
return(-1);
else if(**pp1 > *pp2)
return(1);
return(0);
}
...
int i1;
unsigned long *aprandom[256];
unsigned long arandom[256]; // same array as before, in this case
int aresult[256]; // results go here
for(i1=0; i1 < 256; i1++)
{
aprandom[i1] = arandom + i1;
}
// now sort it
qsort(aprandom, 256, sizeof(*aprandom), mysortproc);
// final step - offsets for pointers are placed into output array
for(i1=0; i1 < 256; i1++)
{
aresult[i1] = (int)(aprandom[i1] - arandom);
}
...
變數'aresult'中的值應該是一個排過序的唯一的一系列的整數的數組,整數的值的范圍均在0到255之間。這樣一個數組是非常有用的,例如:對一個位元組對位元組的轉換表,就可以很容易並且非常可靠的來產生一個短的密鑰(經常作為一些隨機數的種子)。這樣一個表還有其他的用處,比如說:來產生一個隨機的字元,計算機游戲中一個物體的隨機的位置等等。上面的例子就其本身而言並沒有構成一個加密演算法,只是加密演算法一個組成部分。
作為一個測試,開發了一個應用程序來測試上面所描述的加密演算法。程序本身都經過了幾次的優化和修改,來提高隨機數的真正的隨機性和防止會產生一些短的可重復的用於加密的隨機數。用這個程序來加密一個文件,破解這個文件可能會需要非常巨大的時間以至於在現實上是不可能的。
四.結論:
由於在現實生活中,我們要確保一些敏感的數據只能被有相應許可權的人看到,要確保信息在傳輸的過程中不會被篡改,截取,這就需要很多的安全系統大量的應用於政府、大公司以及個人系統。數據加密是肯定可以被破解的,但我們所想要的是一個特定時期的安全,也就是說,密文的破解應該是足夠的困難,在現實上是不可能的,尤其是短時間內。