㈠ Rsa是什麼意思
RSA加密演算法是一種非對稱加密演算法。在公開密鑰加密和電子商業中RSA被廣泛使用。RSA是1977年由羅納德·李維斯特(Ron Rivest)、阿迪·薩莫爾(Adi Shamir)和倫納德·阿德曼(Leonard Adleman)一起提出的。當時他們三人都在麻省理工學院工作。RSA就是他們三人姓氏開頭字母拼在一起組成的。
1973年,在英國政府通訊總部工作的數學家克利福德·柯克斯(Clifford Cocks)在一個內部文件中提出了一個相同的演算法,但他的發現被列入機密,一直到1997年才被發表。
(1)什麼是rsa加密採用的演算法擴展閱讀
RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解RSA就一定需要作大數分解。
假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。 RSA 的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。人們已能分解多個十進制位的大素數。因此,模數n必須選大一些,因具體適用情況而定。
㈡ rsa演算法原理
RSA演算法是最常用的非對稱加密演算法,它既能用於加密,也能用於數字簽名。RSA的安全基於大數分解的難度。其公鑰和私鑰是一對大素數(100到200位十進制數或更大)的函數。從一個公鑰和密文恢復出明文的難度,等價於分解兩個大素數之積。
我們可以通過一個簡單的例子來理解RSA的工作原理。為了便於計算。在以下實例中只選取小數值的素數p,q,以及e,假設用戶A需要將明文「key」通過RSA加密後傳遞給用戶B,過程如下:設計公私密鑰(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3與20互質)則e×d≡1 mod f(n),即3×d≡1 mod 20。通過試算我們找到,當d=7時,e×d≡1 mod f(n)同餘等式成立。因此,可令d=7。從而我們可以設計出一對公私密鑰,加密密鑰(公鑰)為:KU =(e,n)=(3,33),解密密鑰(私鑰)為:KR =(d,n)=(7,33)。
英文數字化。將明文信息數字化,並將每塊兩個數字分組。假定明文英文字母編碼表為按字母順序排列數值。則得到分組後的key的明文信息為:11,05,25。
明文加密。用戶加密密鑰(3,33) 將數字化明文分組信息加密成密文。由C≡Me(mod n)得:
C1(密文)≡M1(明文)^e (mod n) == 11≡11^3 mod 33 ;
C2(密文)≡M2(明文)^e (mod n) == 26≡05^3 mod 33;
C3(密文)≡M3(明文)^e (mod n) == 16≡25^3 mod 33;
所以密文為11.26.16。
密文解密。用戶B收到密文,若將其解密,只需要計算,即:
M1(明文)≡C1(密文)^d (mod n) == 11≡11^7 mod 33;
M2(明文)≡C2(密文)^d (mod n) == 05≡26^7 mod 33;
M3(明文)≡C3(密文)^d (mod n) == 25≡16^7 mod 33;
轉成明文11.05.25。根據上面的編碼表將其轉換為英文,我們又得到了恢復後的原文「key」。
當然,實際運用要比這復雜得多,由於RSA演算法的公鑰私鑰的長度(模長度)要到1024位甚至2048位才能保證安全,因此,p、q、e的選取、公鑰私鑰的生成,加密解密模指數運算都有一定的計算程序,需要仰仗計算機高速完成。
㈢ 什麼是RSA演算法
RSA公鑰加密演算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美國麻省理工學院)開發的。RSA取名來自開發他們三者的名字。RSA是目前最有影響力的公鑰加密演算法,它能夠抵抗到目前為止已知的所有密碼攻擊,已被ISO推薦為公鑰數據加密標准。RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。
㈣ RSA加密演算法,求大神幫解答
如果用一段已經知道的明文,經過公鑰加密,得到密文。現在已知明文密文和n, 是不是就可以通過解密的公式不斷的冪運算求出私鑰d呢?
㈤ 什麼是RAS演算法
1978年就出現了這種演算法,它是第一個既能用於數據加密 也能用於數字簽名的演算法。它易於理解和操作,也很流行。算 法的名字以發明者的名字命名:Ron Rivest, AdiShamir 和 Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。
RSA的安全性依賴於大數分解。公鑰和私鑰都是兩個大素數 (大於 100個十進制位)的函數。據猜測,從一個密鑰和密文 推斷出明文的難度等同於分解兩個大素數的積。
密鑰對的產生:選擇兩個大素數,p 和q 。計算:n = p * q
然後隨機選擇加密密鑰e,要求 e 和 ( p - 1 ) * ( q - 1 )
互質.
最後,利用Euclid 演算法計算解密密鑰d, 滿足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )
其中n和d也要互質。數e和 n是公鑰,d是私鑰。
兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。
加密信息 m(二進製表示)時,首先把m分成等長數據 塊 m1 ,m2,..., mi ,塊長s,其中 2^s <= n, s 盡可能的大。
對 應的密文是:
ci = mi^e ( mod n ) ( a )
解密時作如下計算:
mi = ci^d ( mod n ) ( b )
RSA 可用於數字簽名,方案是用 ( a ) 式簽名, ( b ) 式驗證。
具體操作時考慮到安全性和 m信息量較大等因素,一般是先作HASH 運算。
RSA 的安全性。
RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理
論上的證明,因為沒有證明破解RSA就一定需要作大數分解。假設存在
一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯 然的攻擊方法。現在,人們已能分解140多個十進制位的大素數。因此, 模數n必須選大一些,因具體適用情況而定。
RSA的速度:
由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量據加密。
RSA的選擇密文攻擊:
RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝
(Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保 留了輸入的乘法結構:
( XM )^d = X^d *M^d mod n
前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵 --每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議,保證工作過程中實體不對其他實體
任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不
對陌生人送來的隨機文檔簽名,簽名時首先使用One-Way HashFunction
對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不
同類型的攻擊方法。
RSA的公共模數攻擊。
若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險
的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互
質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰
為e1和e2,公共模數是n,則:
C1 = P^e1 mod n
C2 = P^e2 mod n
密碼分析者知道n、e1、e2、C1和C2,就能得到P。
因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:
r * e1 + s * e2 = 1
假設r為負數,需再用Euclidean演算法計算C1^(-1),則
( C1^(-1) )^(-r) * C2^s = P mod n
另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。
RSA的小指數攻擊。 有一種提高RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。
RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各 種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。
RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難 度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性 能如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。
RSA的缺點主要有:
A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次 一密。
B)分組長度太大,為保證安全性,n 至少也要 600 bits 以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;
且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。
目前,SET(Secure Electronic Transaction)協議中要求CA採用2048比特長的密鑰,其他實體使用1024比特的密鑰。
㈥ 什麼是RSA和ECC演算法
RSA(Rivest-Shamir-Adleman)加密演算法:它是第 一個既能用於數據加密也能用於數字簽名的演算法。比較易於理解和操作,是高強度非對稱加密系統,密鑰長度少則512位,多則2048位,非常難破解,安全系數是非常高的。ECC(Elliptic Curve Cryptosystems )加密演算法:橢圓曲線密碼體制,它同樣也是在數據位上額外的位存儲一個用數據加密的代碼。橢圓曲線其實可能比RSA更復雜。國內的老品牌CA機構-天威誠信,旗下的vTrus SSL證書,該證書支持 SHA256 with RSA 2048 演算法/ECC 256 演算法。
㈦ RSA加密演算法原理
RSA加密演算法是一種典型的非對稱加密演算法,它基於大數的因式分解數學難題,它也是應用最廣泛的非對稱加密演算法,於1978年由美國麻省理工學院(MIT)的三位學著:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。
它的原理較為簡單,假設有消息發送方A和消息接收方B,通過下面的幾個步驟,就可以完成消息的加密傳遞:
消息發送方A在本地構建密鑰對,公鑰和私鑰;
消息發送方A將產生的公鑰發送給消息接收方B;
B向A發送數據時,通過公鑰進行加密,A接收到數據後通過私鑰進行解密,完成一次通信;
反之,A向B發送數據時,通過私鑰對數據進行加密,B接收到數據後通過公鑰進行解密。
由於公鑰是消息發送方A暴露給消息接收方B的,所以這種方式也存在一定的安全隱患,如果公鑰在數據傳輸過程中泄漏,則A通過私鑰加密的數據就可能被解密。
如果要建立更安全的加密消息傳遞模型,需要消息發送方和消息接收方各構建一套密鑰對,並分別將各自的公鑰暴露給對方,在進行消息傳遞時,A通過B的公鑰對數據加密,B接收到消息通過B的私鑰進行解密,反之,B通過A的公鑰進行加密,A接收到消息後通過A的私鑰進行解密。
當然,這種方式可能存在數據傳遞被模擬的隱患,但可以通過數字簽名等技術進行安全性的進一步提升。由於存在多次的非對稱加解密,這種方式帶來的效率問題也更加嚴重。
㈧ 什麼是RSA演算法,有公鑰和私鑰對他的處理過程是這樣的
RSA演算法是一種非對稱密碼演算法,所謂非對稱,就是指該演算法需要一對密鑰,使用其中一個加密,則需要用另一個才能解密。
RSA的演算法涉及三個參數,n、e1、e2。
其中,n是兩個大質數p、q的積,n的二進製表示時所佔用的位數,就是所謂的密鑰長度。
e1和e2是一對相關的值,e1可以任意取,但要求e1與(p-1)*(q-1)互質;再選擇e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密鑰對。
RSA加解密的演算法完全相同,設A為明文,B為密文,則:A=B^e1
mod
n;B=A^e2
mod
n;
e1和e2可以互換使用,即:
A=B^e2
mod
n;B=A^e1
mod
n;
補充回答:
對明文進行加密,有兩種情況需要這樣作:
1、您向朋友傳送加密數據,您希望只有您的朋友可以解密,這樣的話,您需要首先獲取您朋友的密鑰對中公開的那一個密鑰,e及n。然後用這個密鑰進行加密,這樣密文只有您的朋友可以解密,因為對應的私鑰只有您朋友擁有。
2、您向朋友傳送一段數據附加您的數字簽名,您需要對您的數據進行MD5之類的運算以取得數據的"指紋",再對"指紋"進行加密,加密將使用您自己的密鑰對中的不公開的私鑰。您的朋友收到數據後,用同樣的運算獲得數據指紋,再用您的公鑰對加密指紋進行解密,比較解密結果與他自己計算出來的指紋是否一致,即可確定數據是否的確是您發送的、以及在傳輸過程中是否被篡改。
密鑰的獲得,通常由某個機構頒發(如CA中心),當然也可以由您自己創建密鑰,但這樣作,您的密鑰並不具有權威性。
計算方面,按公式計算就行了,如果您的加密強度為1024位,則結果會在有效數據前面補0以補齊不足的位數。補入的0並不影響解密運算。
㈨ 什麼是RSA演算法,求簡單解釋。
RSA公鑰加密演算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美國麻省理工學院)開發的。RSA取名來自開發他們三者的名字。RSA是目前最有影響力的公鑰加密演算法,它能夠
抵抗到目前為止已知的所有密碼攻擊,已被ISO推薦為公鑰數據加密標准。RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。由於進行的都是大數計算,使得RSA最快的情況也比DES慢上好幾倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。RSA的速度比對應同樣安全級別的對稱密碼演算法要慢1000倍左右。
基礎
大數分解和素性檢測——將兩個大素數相乘在計算上很容易實現,但將該乘積分解為兩個大素數因子的計算量是相當巨大的,以至於在實際計算中是不能實現的。
1.RSA密碼體制的建立:
(1)選擇兩個不同的大素數p和q;
(2)計算乘積n=pq和Φ(n)=(p-1)(q-1);
(3)選擇大於1小於Φ(n)的隨機整數e,使得gcd(e,Φ(n))=1;
(4)計算d使得de=1mod Φ(n);
(5)對每一個密鑰k=(n,p,q,d,e),定義加密變換為Ek(x)=xemodn,解密變換為Dk(x)=ydmodn,這里x,y∈Zn;
(6)以{e,n}為公開密鑰,{p,q,d}為私有密鑰。
2.RSA演算法實例:
下面用兩個小素數7和17來建立一個簡單的RSA演算法:
(1)選擇兩個素數p=7和q=17;
(2)計算n=pq=7 17=119,計算Φ(n)=(p-1)(q-1)=6 16=96;
(3)選擇一個隨機整數e=5,它小於Φ(n)=96並且於96互素;
(4)求出d,使得de=1mod96且d<96,此處求出d=77,因為 77 5=385=4 96+1;
(5)輸入明文M=19,計算19模119的5次冪,Me=195=66mod119,傳出密文C=66;(6)接收密文66,計算66模119的77次冪;Cd=6677≡19mod119得到明文19。