導航:首頁 > 程序命令 > 程序員遞歸運演算法

程序員遞歸運演算法

發布時間:2024-03-04 15:19:16

❶ 在java中,用遞歸方法計算n的階乘。

用Java求鍵盤輸入的數的階乘n。(遞歸演算法)packagejiecheng; importjava.util.*; //導入java.util包中的所有類classrep{ publiclongrep(intn){ longi=0; if(n==0||n==1) i=1;

elsi=n*rep(n-1) returni; } } publicclassJie{ publicstaticvoidmain(String[]args){ intn; //此處定義要輸入的數Scanners= newScanner(System.in); //以下三行用於n的值得輸入System.out.print( "請輸入一個整數:"); n=s.nextInt(); repf= newrep(); System.out.println(n+"!="+f.rep(n)); } }

程序員都應該精通的六種演算法,你會了嗎

對於一名優秀的程序員來說,面對一個項目的需求的時候,一定會在腦海里浮現出最適合解決這個問題的方法是什麼,選對了演算法,就會起到事半功倍的效果,反之,則可能會使程序運行效率低下,還容易出bug。因此,熟悉掌握常用的演算法,是對於一個優秀程序員最基本的要求。


那麼,常用的演算法都有哪些呢?一般來講,在我們日常工作中涉及到的演算法,通常分為以下幾個類型:分治、貪心、迭代、枚舉、回溯、動態規劃。下面我們來一一介紹這幾種演算法。


一、分治演算法


分治演算法,顧名思義,是將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。


分治演算法一般分為三個部分:分解問題、解決問題、合並解。

分治演算法適用於那些問題的規模縮小到一定程度就可以解決、並且各子問題之間相互獨立,求出來的解可以合並為該問題的解的情況。


典型例子比如求解一個無序數組中的最大值,即可以採用分治演算法,示例如下:


def pidAndConquer(arr,leftIndex,rightIndex):

if(rightIndex==leftIndex+1 || rightIndex==leftIndex){

return Math.max(arr[leftIndex],arr[rightIndex]);

}

int mid=(leftIndex+rightIndex)/2;

int leftMax=pidAndConquer(arr,leftIndex,mid);

int rightMax=pidAndConquer(arr,mid,rightIndex);

return Math.max(leftMax,rightMax);


二、貪心演算法


貪心演算法是指在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。


貪心演算法的基本思路是把問題分成若干個子問題,然後對每個子問題求解,得到子問題的局部最優解,最後再把子問題的最優解合並成原問題的一個解。這里要注意一點就是貪心演算法得到的不一定是全局最優解。這一缺陷導致了貪心演算法的適用范圍較少,更大的用途在於平衡演算法效率和最終結果應用,類似於:反正就走這么多步,肯定給你一個值,至於是不是最優的,那我就管不了了。就好像去菜市場買幾樣菜,可以經過反復比價之後再買,或者是看到有賣的不管三七二十一先買了,總之最終結果是菜能買回來,但搞不好多花了幾塊錢。


典型例子比如部分背包問題:有n個物體,第i個物體的重量為Wi,價值為Vi,在總重量不超過C的情況下讓總價值盡量高。每一個物體可以只取走一部分,價值和重量按比例計算。

貪心策略就是,每次都先拿性價比高的,判斷不超過C。


三、迭代演算法


迭代法也稱輾轉法,是一種不斷用變數的舊值遞推新值的過程。迭代演算法是用計算機解決問題的一種基本方法,它利用計算機運算速度快、適合做重復性操作的特點,讓計算機對一組指令(或一定步驟)進行重復執行,在每次執行這組指令(或這些步驟)時,都從變數的原值推出它的一個新值。最終得到問題的結果。


迭代演算法適用於那些每步輸入參數變數一定,前值可以作為下一步輸入參數的問題。


典型例子比如說,用迭代演算法計算斐波那契數列。


四、枚舉演算法


枚舉演算法是我們在日常中使用到的最多的一個演算法,它的核心思想就是:枚舉所有的可能。枚舉法的本質就是從所有候選答案中去搜索正確地解。

枚舉演算法適用於候選答案數量一定的情況。


典型例子包括雞錢問題,有公雞5,母雞3,三小雞1,求m錢n雞的所有可能解。可以採用一個三重循環將所有情況枚舉出來。代碼如下:



五、回溯演算法


回溯演算法是一個類似枚舉的搜索嘗試過程,主要是在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。

許多復雜的,規模較大的問題都可以使用回溯法,有「通用解題方法」的美稱。


典型例子是8皇後演算法。在8 8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問一共有多少種擺法。


回溯法是求解皇後問題最經典的方法。演算法的思想在於如果一個皇後選定了位置,那麼下一個皇後的位置便被限制住了,下一個皇後需要一直找直到找到安全位置,如果沒有找到,那麼便要回溯到上一個皇後,那麼上一個皇後的位置就要改變,這樣一直遞歸直到所有的情況都被舉出。


六、動態規劃演算法


動態規劃過程是:每次決策依賴於當前狀態,又隨即引起狀態的轉移。一個決策序列就是在變化的狀態中產生出來的,所以,這種多階段最優化決策解決問題的過程就稱為動態規劃。


動態規劃演算法適用於當某階段狀態給定以後,在這階段以後的過程的發展不受這段以前各段狀態的影響,即無後效性的問題。


典型例子比如說背包問題,給定背包容量及物品重量和價值,要求背包裝的物品價值最大。


❸ 作為程序員提高編程能力的幾個基礎演算法

一:快速排序演算法

快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要Ο(nlogn)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(nlogn)演算法更快,因為它的內部循環(innerloop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divideandconquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

演算法步驟:

1從數列中挑出一個元素,稱為「基準」(pivot),

2重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。

3遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。

二:堆排序演算法

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。

堆排序的平均時間復雜度為Ο(nlogn) 。

創建一個堆H[0..n-1]

把堆首(最大值)和堆尾互換

3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置

4.重復步驟2,直到堆的尺寸為1

三:歸並排序

歸並排序(Mergesort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(DivideandConquer)的一個非常典型的應用。

1.申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列

2.設定兩個指針,最初位置分別為兩個已經排序序列的起始位置

3.比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置

4.重復步驟3直到某一指針達到序列尾

5.將另一序列剩下的所有元素直接復制到合並序列尾

四:二分查找演算法

二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。

五:BFPRT(線性查找演算法)

BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。

1.將n個元素每5個一組,分成n/5(上界)組。

2.取出每一組的中位數,任意排序方法,比如插入排序。

3.遞歸的調用selection演算法查找上一步中所有中位數的中位數,設為x,偶數個中位數的情況下設定為選取中間小的一個。

4.用x來分割數組,設小於等於x的個數為k,大於x的個數即為n-k。

5.若i==k,返回x;若i<k,在小於x的元素中遞歸查找第i小的元素;若i>k,在大於x的元素中遞歸查找第i-k小的元素。

終止條件:n=1時,返回的即是i小元素。

六:DFS(深度優先搜索)

深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。

深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。

深度優先遍歷圖演算法步驟:

1.訪問頂點v;

2.依次從v的未被訪問的鄰接點出發,對圖進行深度優先遍歷;直至圖中和v有路徑相通的頂點都被訪問;

3.若此時圖中尚有頂點未被訪問,則從一個未被訪問的頂點出發,重新進行深度優先遍歷,直到圖中所有頂點均被訪問過為止。

上述描述可能比較抽象,舉個實例:

DFS在訪問圖中某一起始頂點v後,由v出發,訪問它的任一鄰接頂點w1;再從w1出發,訪問與w1鄰接但還沒有訪問過的頂點w2;然後再從w2出發,進行類似的訪問,…如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點u為止。

接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。

七:BFS(廣度優先搜索)

廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。

BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。

1.首先將根節點放入隊列中。

2.從隊列中取出第一個節點,並檢驗它是否為目標。

如果找到目標,則結束搜尋並回傳結果。

否則將它所有尚未檢驗過的直接子節點加入隊列中。

3.若隊列為空,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」。

4.重復步驟2。

八:Dijkstra演算法

戴克斯特拉演算法(Dijkstra』salgorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。

該演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E表示G中所有邊的集合,而邊的權重則由權重函數w:E→[0,∞]定義。因此,w(u,v)就是從頂點u到頂點v的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。

1.初始時令S=,T=,T中頂點對應的距離值

若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值

若不存在<V0,Vi>,d(V0,Vi)為∞

2.從T中選取一個其距離值為最小的頂點W且不在S中,加入S

3.對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值縮短,則修改此距離值

重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止

九:動態規劃演算法

動態規劃(Dynamicprogramming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。

動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表。這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。

關於動態規劃最經典的問題當屬背包問題。

1.最優子結構性質。如果問題的最優解所包含的子問題的解也是最優的,我們就稱該問題具有最優子結構性質(即滿足最優化原理)。最優子結構性質為動態規劃演算法解決問題提供了重要線索。

2.子問題重疊性質。子問題重疊性質是指在用遞歸演算法自頂向下對問題進行求解時,每次產生的子問題並不總是新問題,有些子問題會被重復計算多次。動態規劃演算法正是利用了這種子問題的重疊性質,對每一個子問題只計算一次,然後將其計算結果保存在一個表格中,當再次需要計算已經計算過的子問題時,只是在表格中簡單地查看一下結果,從而獲得較高的效率。

十:樸素貝葉斯分類演算法

樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下,如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。

樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。

盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。

通過掌握以上演算法,能夠幫你迅速提高編程能力,成為一名優秀的程序員。

❹ 程序員必須掌握哪些演算法

一.基本演算法:

枚舉. (poj1753,poj2965)

貪心(poj1328,poj2109,poj2586)

遞歸和分治法.

遞推.

構造法.(poj3295)

模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)

二.圖演算法:

圖的深度優先遍歷和廣度優先遍歷.

最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓撲排序 (poj1094)

二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)

最大流的增廣路演算法(KM演算法). (poj1459,poj3436)

三.數據結構.

串 (poj1035,poj3080,poj1936)

排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)

簡單並查集的應用.

哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼樹(poj3253)



trie樹(靜態建樹、動態建樹) (poj2513)

四.簡單搜索

深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)

廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)

簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)

五.動態規劃

背包問題. (poj1837,poj1276)

型如下表的簡單DP(可參考lrj的書 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學

組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.

幾何公式.

叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)

多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)

中級(校賽壓軸及省賽中等難度):
一.基本演算法:

C++的標准模版庫的應用. (poj3096,poj3007)

較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)

二.圖演算法:

差分約束系統的建立和求解. (poj1201,poj2983)

最小費用最大流(poj2516,poj2516,poj2195)

雙連通分量(poj2942)

強連通分支及其縮點.(poj2186)

圖的割邊和割點(poj3352)

最小割模型、網路流規約(poj3308)

三.數據結構.

線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)

靜態二叉檢索樹. (poj2482,poj2352)

樹狀樹組(poj1195,poj3321)

RMQ. (poj3264,poj3368)

並查集的高級應用. (poj1703,2492)

KMP演算法. (poj1961,poj2406)

四.搜索

最優化剪枝和可行性剪枝

搜索的技巧和優化 (poj3411,poj1724)

記憶化搜索(poj3373,poj1691)

五.動態規劃

較為復雜的動態規劃(如動態規劃解特別的旅行商TSP問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)

樹型動態規劃(poj2057,poj1947,poj2486,poj3140)

六.數學

組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
隨機化演算法(poj3318,poj2454)
雜題(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.

坐標離散化.

掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
多邊形的內核(半平面交)(poj3130,poj3335)

幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)

高級(regional中等難度):
一.基本演算法要求:

代碼快速寫成,精簡但不失風格

(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)

保證正確性和高效性. poj3434

二.圖演算法:

度限制最小生成樹和第K最短路. (poj1639)

最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
最優比率生成樹. (poj2728)

最小樹形圖(poj3164)

次小生成樹.

無向圖、有向圖的最小環

三.數據結構.

trie圖的建立和應用. (poj2778)

LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法(RMQ+dfs)).(poj1330)
雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移的目的). (poj2823)
左偏樹(可合並堆).

後綴樹(非常有用的數據結構,也是賽區考題的熱點).(poj3415,poj3294)
四.搜索

較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)

廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)

深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)

五.動態規劃

需要用數據結構優化的動態規劃.(poj2754,poj3378,poj3017)
四邊形不等式理論.

較難的狀態DP(poj3133)

六.數學

組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.

半平面求交(poj3384,poj2540)

可視圖的建立(poj2966)

點集最小圓覆蓋.

對踵點(poj2079)

❺ 用java遞歸演算法求一個數字的階乘

用遞歸演算法求一個數字的階乘的程序如下:
public class JieCheng {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.print("請輸入一個整數:");
int n = in.nextInt();
System.out.println(n+"!="+f(n));
}
static long f(int n){
if (n==1) return 1;
else return n*f(n-1);
}
}
運行結果:
請輸入一個整數:6
6!=720

❻ C語言的遞歸好難理解,誰能詳細解釋下

<可以自由轉載,但請註明以下內容,謝謝合作!>
<作者:Enoch Wang 引用自:http://chinawangquan.spaces.live.com>
所謂遞歸,簡而言之就是應用程序自身調用自身,以實現層次數據結構的查詢和訪問。 遞歸的使用可以使代碼更簡潔清晰,可讀性更好(對於初學者到不見得),但由於遞歸需要系統堆棧,所以空間消耗要比非遞歸代碼要大很多,而且,如果遞歸深度太大,可能系統資源會不夠用。
往往有這樣的觀點:能不用遞歸就不用遞歸,遞歸都可以用迭代來代替。
誠然,在理論上,遞歸和迭代在時間復雜度方面是等價的(在不考慮函數調用開銷和函數調用產生的堆棧開銷),但實際上遞歸確實效率比迭代低,既然這樣,遞歸沒有任何優勢,那麼是不是就,沒有使用遞歸的必要了,那遞歸的存在有何意義呢?
萬物的存在是需要時間的檢驗的,遞歸沒有被歷史所埋沒,即有存在的理由。從理論上說,所有的遞歸函數都可以轉換為迭代函數,反之亦然,然而代價通常都是比較高的。但從演算法結構來說,遞歸聲明的結構並不總能夠轉換為迭代結構,原因在於結構的引申本身屬於遞歸的概念,用迭代的方法在設計初期根本無法實現,這就像動多態的東西並不總是可以用靜多態的方法實現一樣。這也是為什麼在結構設計時,通常採用遞歸的方式而不是採用迭代的方式的原因,一個極典型的例子類似於鏈表,使用遞歸定義及其簡單,但對於內存定義(數組方式)其定義及調用處理說明就變得很晦澀,尤其是在遇到環鏈、圖、網格等問題時,使用迭代方式從描述到實現上都變得不現實。 因而可以從實際上說,所有的迭代可以轉換為遞歸,但遞歸不一定可以轉換為迭代。
採用遞歸演算法需要的前提條件是,當且僅當一個存在預期的收斂時,才可採用遞歸演算法,否則,就不能使用遞歸演算法。
遞歸其實是方便了程序員難為了機器,遞歸可以通過數學公式很方便的轉換為程序。其優點就是易理解,容易編程。但遞歸是用棧機制實現的,每深入一層,都要佔去一塊棧數據區域,對嵌套層數深的一些演算法,遞歸會力不從心,空間上會以內存崩潰而告終,而且遞歸也帶來了大量的函數調用,這也有許多額外的時間開銷。所以在深度大時,它的時空性就不好了。
而迭代雖然效率高,運行時間只因循環次數增加而增加,沒什麼額外開銷,空間上也沒有什麼增加,但缺點就是不容易理解,編寫復雜問題時困難。
因而,「能不用遞歸就不用遞歸,遞歸都可以用迭代來代替」這樣的理解,Enoch不敢苟同,還是辯證的來看待,不可一棍子打死。
參考資料:http://chinawangquan.spaces.live.com/blog/cns!9CF795352E94BF70!787.entry

閱讀全文

與程序員遞歸運演算法相關的資料

熱點內容
女主叫溫暖的小說 瀏覽:212
三星為什麼是安卓機皇 瀏覽:527
換蘋果手機怎麼把app弄到新手機 瀏覽:853
頭條下載了app怎麼安裝到桌面 瀏覽:886
原泥動力作用怎麼寫app 瀏覽:704
友行app怎麼注冊 瀏覽:191
伺服器如何打開組件服務 瀏覽:144
預約的app怎麼弄 瀏覽:508
來自星星的孩子印度電影名 瀏覽:600
大香焦高清在線 瀏覽:747
android自身卸載監聽 瀏覽:77
日本經典風月片 瀏覽:56
韓國把黃瓜套上避孕套的電影 瀏覽:643
jpeg如何轉換成pdf 瀏覽:61
英譯pdf 瀏覽:222
解壓的聲控圖片 瀏覽:208
迪士尼大電影 百度網盤 瀏覽:88
數組setjava 瀏覽:275
中國禁止觀看的十部鬼片 瀏覽:745
桌面小組件app怎麼添加到桌面 瀏覽:420