導航:首頁 > 編程語言 > python和hadoop

python和hadoop

發布時間:2022-06-19 20:34:35

⑴ 大數據用hadoop還是python

如果是spark的話,是提供python介面的啊hadoop好像也可以提供吧,你上網找找吧(也有可能沒有)而且python適合單機版的運算(sklearn),大數據下面基於map-rece的思想,所以有很多演算法是不適用的,或者需要額外的開發,所以一般都是大數據平台(如你說的spark,h單暢廁堆丿瞪搽缺敞畫adoop自身提供的),python只要做好自己的單機功能就好了。

⑵ 學習hadoop只會python可以嗎

Python學得倒不用很深,循環跟函數還有類學完就可以搞深度學習了。 新手用深度學習庫先跑跑,真要進階還要修改的話,你會發現瓶頸其實在數學,不在Python

⑶ Python和R語言,誰更適用於Spark/Hadoop和深度學習

Python更適合。。。現在有很多深度學習的python包
感覺nolearn + lasagne比keras好用一點,當然這兩個都不錯,可以都試試

⑷ 大數據hadoop和python哪個好

都很好Hadoop應用及開發Python主要做數據挖掘。方向不同罷了。只要是這兩個方面技術合格的人才都會很好的。

⑸ 如何使用Python為Hadoop編寫一個簡單的MapRece程序

在這個實例中,我將會向大家介紹如何使用Python 為 Hadoop編寫一個簡單的MapRece
程序。
盡管Hadoop 框架是使用java編寫的但是我們仍然需要使用像C++、Python等語言來實現Hadoop程序。盡管Hadoop官方網站給的示常式序是使用Jython編寫並打包成Jar文件,這樣顯然造成了不便,其實,不一定非要這樣來實現,我們可以使用Python與Hadoop 關聯進行編程,看看位於/src/examples/python/WordCount.py 的例子,你將了解到我在說什麼。

我們想要做什麼?

我們將編寫一個簡單的 MapRece 程序,使用的是C-Python,而不是Jython編寫後打包成jar包的程序。
我們的這個例子將模仿 WordCount 並使用Python來實現,例子通過讀取文本文件來統計出單詞的出現次數。結果也以文本形式輸出,每一行包含一個單詞和單詞出現的次數,兩者中間使用製表符來想間隔。

先決條件

編寫這個程序之前,你學要架設好Hadoop 集群,這樣才能不會在後期工作抓瞎。如果你沒有架設好,那麼在後面有個簡明教程來教你在Ubuntu linux 上搭建(同樣適用於其他發行版linux、unix)

如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立單節點的 Hadoop 集群

如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多節點的 Hadoop 集群

Python的MapRece代碼

使用Python編寫MapRece代碼的技巧就在於我們使用了 HadoopStreaming 來幫助我們在Map 和 Rece間傳遞數據通過STDIN (標准輸入)和STDOUT (標准輸出).我們僅僅使用Python的sys.stdin來輸入數據,使用sys.stdout輸出數據,這樣做是因為HadoopStreaming會幫我們辦好其他事。這是真的,別不相信!

Map: mapper.py

將下列的代碼保存在/home/hadoop/mapper.py中,他將從STDIN讀取數據並將單詞成行分隔開,生成一個列表映射單詞與發生次數的關系:
注意:要確保這個腳本有足夠許可權(chmod +x /home/hadoop/mapper.py)。

#!/usr/bin/env python

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Rece step, i.e. the input for recer.py
#
# tab-delimited; the trivial word count is 1
print '%s\\t%s' % (word, 1)在這個腳本中,並不計算出單詞出現的總數,它將輸出 "<word> 1" 迅速地,盡管<word>可能會在輸入中出現多次,計算是留給後來的Rece步驟(或叫做程序)來實現。當然你可以改變下編碼風格,完全尊重你的習慣。

Rece: recer.py

將代碼存儲在/home/hadoop/recer.py 中,這個腳本的作用是從mapper.py 的STDIN中讀取結果,然後計算每個單詞出現次數的總和,並輸出結果到STDOUT。
同樣,要注意腳本許可權:chmod +x /home/hadoop/recer.py

#!/usr/bin/env python

from operator import itemgetter
import sys

# maps words to their counts
word2count = {}

# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()

# parse the input we got from mapper.py
word, count = line.split('\\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
# count was not a number, so silently
# ignore/discard this line
pass

# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted_word2count = sorted(word2count.items(), key=itemgetter(0))

# write the results to STDOUT (standard output)
for word, count in sorted_word2count:
print '%s\\t%s'% (word, count)
測試你的代碼(cat data | map | sort | rece)

我建議你在運行MapRece job測試前嘗試手工測試你的mapper.py 和 recer.py腳本,以免得不到任何返回結果
這里有一些建議,關於如何測試你的Map和Rece的功能:
——————————————————————————————————————————————
\r\n
# very basic test
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py
foo 1
foo 1
quux 1
labs 1
foo 1
bar 1
——————————————————————————————————————————————
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/recer.py
bar 1
foo 3
labs 1
——————————————————————————————————————————————

# using one of the ebooks as example input
# (see below on where to get the ebooks)
hadoop@ubuntu:~$ cat /tmp/gutenberg/20417-8.txt | /home/hadoop/mapper.py
The 1
Project 1
Gutenberg 1
EBook 1
of 1
[...]
(you get the idea)

quux 2

quux 1

——————————————————————————————————————————————

在Hadoop平台上運行Python腳本

為了這個例子,我們將需要三種電子書:

The Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson\r\n
The Notebooks of Leonardo Da Vinci\r\n
Ulysses by James Joyce
下載他們,並使用us-ascii編碼存儲 解壓後的文件,保存在臨時目錄,比如/tmp/gutenberg.

hadoop@ubuntu:~$ ls -l /tmp/gutenberg/
total 3592
-rw-r--r-- 1 hadoop hadoop 674425 2007-01-22 12:56 20417-8.txt
-rw-r--r-- 1 hadoop hadoop 1423808 2006-08-03 16:36 7ldvc10.txt
-rw-r--r-- 1 hadoop hadoop 1561677 2004-11-26 09:48 ulyss12.txt
hadoop@ubuntu:~$

復制本地數據到HDFS

在我們運行MapRece job 前,我們需要將本地的文件復制到HDFS中:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -FromLocal /tmp/gutenberg gutenberg
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls
Found 1 items
/user/hadoop/gutenberg <dir>
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg
Found 3 items
/user/hadoop/gutenberg/20417-8.txt <r 1> 674425
/user/hadoop/gutenberg/7ldvc10.txt <r 1> 1423808
/user/hadoop/gutenberg/ulyss12.txt <r 1> 1561677

執行 MapRece job

現在,一切准備就緒,我們將在運行Python MapRece job 在Hadoop集群上。像我上面所說的,我們使用的是
HadoopStreaming 幫助我們傳遞數據在Map和Rece間並通過STDIN和STDOUT,進行標准化輸入輸出。

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output
在運行中,如果你想更改Hadoop的一些設置,如增加Rece任務的數量,你可以使用「-jobconf」選項:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-jobconf mapred.rece.tasks=16 -mapper ...

一個重要的備忘是關於Hadoop does not honor mapred.map.tasks
這個任務將會讀取HDFS目錄下的gutenberg並處理他們,將結果存儲在獨立的結果文件中,並存儲在HDFS目錄下的
gutenberg-output目錄。
之前執行的結果如下:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output

additionalConfSpec_:null
null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar54543/]
[] /tmp/streamjob54544.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 7
[...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_200803031615_0021
[...]
[...] INFO streaming.StreamJob: map 0% rece 0%
[...] INFO streaming.StreamJob: map 43% rece 0%
[...] INFO streaming.StreamJob: map 86% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 33%
[...] INFO streaming.StreamJob: map 100% rece 70%
[...] INFO streaming.StreamJob: map 100% rece 77%
[...] INFO streaming.StreamJob: map 100% rece 100%
[...] INFO streaming.StreamJob: Job complete: job_200803031615_0021

[...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$

正如你所見到的上面的輸出結果,Hadoop 同時還提供了一個基本的WEB介面顯示統計結果和信息。
當Hadoop集群在執行時,你可以使用瀏覽器訪問 http://localhost:50030/ ,如圖:

檢查結果是否輸出並存儲在HDFS目錄下的gutenberg-output中:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg-output
Found 1 items
/user/hadoop/gutenberg-output/part-00000 <r 1> 903193 2007-09-21 13:00
hadoop@ubuntu:/usr/local/hadoop$

可以使用dfs -cat 命令檢查文件目錄

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"A 2
"AS-IS". 2
"A_ 1
"Absoluti 1
[...]
hadoop@ubuntu:/usr/local/hadoop$

注意比輸出,上面結果的(")符號不是Hadoop插入的。

轉載僅供參考,版權屬於原作者。祝你愉快,滿意請採納哦

⑹ 請教一下前輩們,spss、python、sas、hadoop和paas的從屬關系怎麼理解

SPSS、SAS、R這三類工具傳統來說都是在關系資料庫上進行數據統計分析的,現在可以基於hadoop平台用這些工具進行數據統計分析,結合hadoop強大的橫向擴展和並行計算能力,來發揮數據分析工具的能力。

⑺ 有人用Python+hadoop streaming來寫東西么

轉載:我們將編寫一個簡單的 MapRece 程序,使用的是C-Python,而不是Jython編寫後打包成jar包的程序。 我們的這個例子將模仿 WordCount 並使用Python來實現,例子通過讀取文本文件來統計出單詞的出現次數。結果也以文本形式輸出,每一行包含...

⑻ python的map和rece和Hadoop的MapRece有什麼關系

關系就是都是基於Map-Rece的處理思想設計出來的。
從用戶角度看功能其實差不多,
Python的Map函數和Hadoop的Map階段對輸入進行逐行處理;
Python的Rece函數和Hadoop的Rece階段對輸入進行累積處理。
但是其實完整的Hadoop MapRece是Map+Shuffle+Sort+Rece過程。
其中Shuffle過程是為了讓分布式機群之間將同Key數據進行互相交換,Sort過程是根據Key對所有數據進行排序,從而才能完成類WordCount功能,而這兩步在Python裡面當然是需要用戶自己去編寫的。

⑼ python和hadoop有什麼聯系

沒聯系
python 是一門動態語言,
hadoop是一個分布式計算的框架, 是用java寫的.
他們是兩個層次的東西.
如果說非要有聯系, 就是python可以應用hadoop框架, 做分布式計算的開發.
但是語言和框架, 是可以自己拼裝的. java也可以使用hadoop開發分布式計算,
python也可以用spark開發分布式計算, 他們是松耦合的, 可以自己根據需求搭配

閱讀全文

與python和hadoop相關的資料

熱點內容
不會數學英語如何編程 瀏覽:88
如何能知道網站伺服器地址 瀏覽:648
程序員月薪5萬難嗎 瀏覽:138
如何評價程序員 瀏覽:802
雲虛機和伺服器的區別 瀏覽:403
廣西柳州壓縮機廠 瀏覽:639
arm開發編譯器 瀏覽:833
51單片機的核心 瀏覽:746
看電視直播是哪個app 瀏覽:958
將c源程序編譯成目標文件 瀏覽:787
再要你命3000pdf 瀏覽:558
ai軟體解壓軟體怎麼解壓 瀏覽:520
文件夾怎樣設置序列號 瀏覽:963
javascriptgzip壓縮 瀏覽:248
易語言怎麼取出文件夾 瀏覽:819
蘋果xs手機加密app哪裡設置 瀏覽:605
超聲霧化器與壓縮霧化器 瀏覽:643
模擬實現進程調度演算法 瀏覽:388
現在的壓縮包都是加密 瀏覽:331
施工員找工作去哪個app 瀏覽:632