Ⅰ 為什麼android要採用Binder作為IPC機制
1)從性能的角度
數據拷貝次數:Binder數據拷貝只需要一次,而管道、消息隊列、Socket都需要2次,但共享內存方式一次內存拷貝都不需要;從性能角度看,Binder性能僅次於共享內存。
(2)從穩定性的角度
Binder是基於C/S架構的,簡單解釋下C/S架構,是指客戶端(Client)和服務端(Server)組成的架構,Client端有什麼需求,直接發送給Server端去完成,架構清晰明朗,Server端與Client端相對獨立,穩定性較好;而共享內存實現方式復雜,沒有客戶與服務端之別, 需要充分考慮到訪問臨界資源的並發同步問題,否則可能會出現死鎖等問題;從這穩定性角度看,Binder架構優越於共享內存。
僅僅從以上兩點,各有優劣,還不足以支撐google去採用binder的IPC機制,那麼更重要的原因是:
(3)從安全的角度
傳統linux IPC的接收方無法獲得對方進程可靠的UID/PID,從而無法鑒別對方身份;而Android作為一個開放的開源體系,擁有非常多的開發平台,App來源甚廣,因此手機的安全顯得額外重要;對於普通用戶,絕不希望從App商店下載偷窺隱射數據、後台造成手機耗電等等問題,傳統Linux IPC無任何保護措施,完全由上層協議來確保。
Android為每個安裝好的應用程序分配了自己的UID,故進程的UID是鑒別進程身份的重要標志,前面提到C/S架構,Android系統中對外只暴露Client端,Client端將任務發送給Server端,Server端會根據許可權控制策略,判斷UID/PID是否滿足訪問許可權,目前許可權控制很多時候是通過彈出許可權詢問對話框,讓用戶選擇是否運行。Android 6.0,也稱為Android M,在6.0之前的系統是在App第一次安裝時,會將整個App所涉及的所有許可權一次詢問,只要留意看會發現很多App根本用不上通信錄和簡訊,但在這一次性許可權許可權時會包含進去,讓用戶拒絕不得,因為拒絕後App無法正常使用,而一旦授權後,應用便可以胡作非為。
針對這個問題,google在Android M做了調整,不再是安裝時一並詢問所有許可權,而是在App運行過程中,需要哪個許可權再彈框詢問用戶是否給相應的許可權,對許可權做了更細地控制,讓用戶有了更多的可控性,但同時也帶來了另一個用戶詬病的地方,那也就是許可權詢問的彈框的次數大幅度增多。對於Android M平台上,有些App開發者可能會寫出讓手機異常頻繁彈框的App,企圖直到用戶授權為止,這對用戶來說是不能忍的,用戶最後吐槽的可不光是App,還有Android系統以及手機廠商,有些用戶可能就跳果粉了,這還需要廣大Android開發者以及手機廠商共同努力,共同打造安全與體驗俱佳的Android手機。
Android中許可權控制策略有SELinux等多方面手段,下面列舉從Binder的一個角度的許可權控制:
Android源碼的Binder許可權是如何控制? -Gityuan的回答
傳統IPC只能由用戶在數據包里填入UID/PID;另外,可靠的身份標記只有由IPC機制本身在內核中添加。其次傳統IPC訪問接入點是開放的,無法建立私有通道。從安全形度,Binder的安全性更高。
說到這,可能有人要反駁,Android就算用了Binder架構,而現如今Android手機的各種流氓軟體,不就是干著這種偷窺隱射,後台偷偷跑流量的事嗎?沒錯,確實存在,但這不能說Binder的安全性不好,因為Android系統仍然是掌握主控權,可以控制這類App的流氓行為,只是對於該採用何種策略來控制,在這方面android的確存在很多有待進步的空間,這也是google以及各大手機廠商一直努力改善的地方之一。在Android 6.0,google對於app的許可權問題作為較多的努力,大大收緊的應用許可權;另外,在Google舉辦的Android Bootcamp 2016大會中,google也表示在Android 7.0 (也叫Android N)的許可權隱私方面會進一步加強加固,比如SELinux,Memory safe language(還在research中)等等,在今年的5月18日至5月20日,google將推出Android N。
(4)從語言層面的角度
大家多知道Linux是基於C語言(面向過程的語言),而Android是基於java語言(面向對象的語句),而對於Binder恰恰也符合面向對象的思想,將進程間通信轉化為通過對某個Binder對象的引用調用該對象的方法,而其獨特之處在於Binder對象是一個可以跨進程引用的對象,它的實體位於一個進程中,而它的引用卻遍布於系統的各個進程之中。可以從一個進程傳給其它進程,讓大家都能訪問同一Server,就像將一個對象或引用賦值給另一個引用一樣。Binder模糊了進程邊界,淡化了進程間通信過程,整個系統彷彿運行於同一個面向對象的程序之中。從語言層面,Binder更適合基於面向對象語言的Android系統,對於Linux系統可能會有點「水土不服」。
另外,Binder是為Android這類系統而生,而並非Linux社區沒有想到Binder IPC機制的存在,對於Linux社區的廣大開發人員,我還是表示深深佩服,讓世界有了如此精湛而美妙的開源系統。也並非Linux現有的IPC機制不夠好,相反地,經過這么多優秀工程師的不斷打磨,依然非常優秀,每種Linux的IPC機制都有存在的價值,同時在Android系統中也依然採用了大量Linux現有的IPC機制,根據每類IPC的原理特性,因時制宜,不同場景特性往往會採用其下最適宜的。比如在Android OS中的Zygote進程的IPC採用的是Socket(套接字)機制,Android中的Kill Process採用的signal(信號)機制等等。而Binder更多則用在system_server進程與上層App層的IPC交互。
(5) 從公司戰略的角度
總所周知,Linux內核是開源的系統,所開放源代碼許可協議GPL保護,該協議具有「病毒式感染」的能力,怎麼理解這句話呢?受GPL保護的Linux Kernel是運行在內核空間,對於上層的任何類庫、服務、應用等運行在用戶空間,一旦進行SysCall(系統調用),調用到底層Kernel,那麼也必須遵循GPL協議。
而Android 之父 Andy Rubin對於GPL顯然是不能接受的,為此,Google巧妙地將GPL協議控制在內核空間,將用戶空間的協議採用Apache-2.0協議(允許基於Android的開發商不向社區反饋源碼),同時在GPL協議與Apache-2.0之間的Lib庫中採用BSD證授權方法,有效隔斷了GPL的傳染性,仍有較大爭議,但至少目前緩解Android,讓GPL止步於內核空間,這是Google在GPL Linux下 開源與商業化共存的一個成功典範。
Ⅱ Java後台控制器如何綁定枚舉類型
@InitBinder
public void initBinder(WebDataBinder binder) {
binder.registerCustomEditor(枚舉類.class, new PropertyEditorSupport() {
@Override
public void setAsText(String text) throws IllegalArgumentException {
if (!StringUtils.hasText(text)) {
return;
}
/**這里進行枚舉索引到枚舉值的轉換*/
}
}
});
}
Ⅲ 安卓中的Binder架構是什麼為什麼要提供Binder
1)從性能的角度數據拷貝次數:Binder數據拷貝只需要一次,而管道、消息隊列、Socket都需要2次,但共享內存方式一次內存拷貝都不需要;從性能角度看,Binder性能僅次於共享內存。(2)從穩定性的角度Binder是基於C/S架構的,簡單解釋下C/S架構,是指客戶端(Client)和服務端(Server)組成的架構,Client端有什麼需求,直接發送給Server端去完成,架構清晰明朗,Server端與Client端相對獨立,穩定性較好;而共享內存實現方式復雜,沒有客戶與服務端之別, 需要充分考慮到訪問臨界資源的並發同步問題,否則可能會出現死鎖等問題;從這穩定性角度看,Binder架構優越於共享內存。僅僅從以上兩點,各有優劣,還不足以支撐google去採用binder的IPC機制,那麼更重要的原因是:(3)從安全的角度傳統Linux IPC的接收方無法獲得對方進程可靠的UID/PID,從而無法鑒別對方身份;而Android作為一個開放的開源體系,擁有非常多的開發平台,App來源甚廣,因此手機的安全顯得額外重要;對於普通用戶,絕不希望從App商店下載偷窺隱射數據、後台造成手機耗電等等問題,傳統Linux IPC無任何保護措施,完全由上層協議來確保。 Android為每個安裝好的應用程序分配了自己的UID,故進程的UID是鑒別進程身份的重要標志,前面提到C/S架構,Android系統中對外只暴露Client端,Client端將任務發送給Server端,Server端會根據許可權控制策略,判斷UID/PID是否滿足訪問許可權,目前許可權控制很多時候是通過彈出許可權詢問對話框,讓用戶選擇是否運行。Android 6.0,也稱為Android M,在6.0之前的系統是在App第一次安裝時,會將整個App所涉及的所有許可權一次詢問,只要留意看會發現很多App根本用不上通信錄和簡訊,但在這一次性許可權許可權時會包含進去,讓用戶拒絕不得,因為拒絕後App無法正常使用,而一旦授權後,應用便可以胡作非為。針對這個問題,google在Android M做了調整,不再是安裝時一並詢問所有許可權,而是在App運行過程中,需要哪個許可權再彈框詢問用戶是否給相應的許可權,對許可權做了更細地控制,讓用戶有了更多的可控性,但同時也帶來了另一個用戶詬病的地方,那也就是許可權詢問的彈框的次數大幅度增多。對於Android M平台上,有些App開發者可能會寫出讓手機異常頻繁彈框的App,企圖直到用戶授權為止,這對用戶來說是不能忍的,用戶最後吐槽的可不光是App,還有Android系統以及手機廠商,有些用戶可能就跳果粉了,這還需要廣大Android開發者以及手機廠商共同努力,共同打造安全與體驗俱佳的Android手機。Android中許可權控制策略有SELinux等多方面手段,下面列舉從Binder的一個角度的許可權控制:Android源碼的Binder許可權是如何控制? -Gityuan的回答傳統IPC只能由用戶在數據包里填入UID/PID;另外,可靠的身份標記只有由IPC機制本身在內核中添加。其次傳統IPC訪問接入點是開放的,無法建立私有通道。從安全形度,Binder的安全性更高。說到這,可能有人要反駁,Android就算用了Binder架構,而現如今Android手機的各種流氓軟體,不就是干著這種偷窺隱射,後台偷偷跑流量的事嗎?沒錯,確實存在,但這不能說Binder的安全性不好,因為Android系統仍然是掌握主控權,可以控制這類App的流氓行為,只是對於該採用何種策略來控制,在這方面android的確存在很多有待進步的空間,這也是google以及各大手機廠商一直努力改善的地方之一。在Android 6.0,google對於app的許可權問題作為較多的努力,大大收緊的應用許可權;另外,在Google舉辦的Android Bootcamp 2016大會中,google也表示在Android 7.0 (也叫Android N)的許可權隱私方面會進一步加強加固,比如SELinux,Memory safe language(還在research中)等等,在今年的5月18日至5月20日,google將推出Android N。 (4)從語言層面的角度大家多知道Linux是基於C語言(面向過程的語言),而Android是基於Java語言(面向對象的語句),而對於Binder恰恰也符合面向對象的思想,將進程間通信轉化為通過對某個Binder對象的引用調用該對象的方法,而其獨特之處在於Binder對象是一個可以跨進程引用的對象,它的實體位於一個進程中,而它的引用卻遍布於系統的各個進程之中。可以從一個進程傳給其它進程,讓大家都能訪問同一Server,就像將一個對象或引用賦值給另一個引用一樣。Binder模糊了進程邊界,淡化了進程間通信過程,整個系統彷彿運行於同一個面向對象的程序之中。從語言層面,Binder更適合基於面向對象語言的Android系統,對於Linux系統可能會有點「水土不服」。另外,Binder是為Android這類系統而生,而並非Linux社區沒有想到Binder IPC機制的存在,對於Linux社區的廣大開發人員,我還是表示深深佩服,讓世界有了如此精湛而美妙的開源系統。也並非Linux現有的IPC機制不夠好,相反地,經過這么多優秀工程師的不斷打磨,依然非常優秀,每種Linux的IPC機制都有存在的價值,同時在Android系統中也依然採用了大量Linux現有的IPC機制,根據每類IPC的原理特性,因時制宜,不同場景特性往往會採用其下最適宜的。比如在Android OS中的Zygote進程的IPC採用的是Socket(套接字)機制,Android中的Kill Process採用的signal(信號)機制等等。而Binder更多則用在system_server進程與上層App層的IPC交互。(5) 從公司戰略的角度總所周知,Linux內核是開源的系統,所開放源代碼許可協議GPL保護,該協議具有「病毒式感染」的能力,怎麼理解這句話呢?受GPL保護的Linux Kernel是運行在內核空間,對於上層的任何類庫、服務、應用等運行在用戶空間,一旦進行SysCall(系統調用),調用到底層Kernel,那麼也必須遵循GPL協議。 而Android 之父 Andy Rubin對於GPL顯然是不能接受的,為此,Google巧妙地將GPL協議控制在內核空間,將用戶空間的協議採用Apache-2.0協議(允許基於Android的開發商不向社區反饋源碼),同時在GPL協議與Apache-2.0之間的Lib庫中採用BSD證授權方法,有效隔斷了GPL的傳染性,仍有較大爭議,但至少目前緩解Android,讓GPL止步於內核空間,這是Google在GPL Linux下 開源與商業化共存的一個成功典範。
Ⅳ 華為手機binder是病毒嗎
不是。
那個是華為雲為你提供binder的精選文章等,同時提供包含binder相關的軟體資源、產品活動、最佳實踐以及常見問題文檔等信息。
工作原理:
手機中的軟體,嵌入式操作系統(固化在晶元中的操作系統,一般由 JAVA、C++等語言編寫),相當於一個小型的智能處理器,所以會遭受病毒攻擊。
而且,簡訊也不只是簡單的文字,其中包括手機鈴聲、圖片等信息,都需要手機中的操作系統進行解釋,然後顯示給手機用戶,手機病毒就是靠軟體系統的漏洞來入侵手機的。
手機病毒要傳播和運行,必要條件是移動服務商要提供數據傳輸功能,而且手機需要支持Java等高級程序寫入功能。許多具備上網及下載等功能的手機都可能會被手機病毒入侵。
傳播方式:
利用藍牙方式傳播:「卡波爾」病毒會修改智能手機的系統設置,通過藍牙自動搜索相鄰的手機是否存在漏洞,並進行攻擊。
感染PC上的手機可執行文件:「韋拉斯科」病毒感染電腦後,會搜索電腦硬碟上的SIS可執行文件並進行感染。
利用MMS多媒體信息服務方式來傳播:。
利用手機的BUG攻擊:這類病毒一般是在攜帶型信息設備的「 EPOC」上運行,如「EPOC-ALARM」、「EPOC-BANDINFO.A」、「EPOC-FAKE.A」、「EPOC-GHOST.A」、「EPOC-ALIGHT.A」等。
Ⅳ Android為什麼選擇binder
Binder主要能提供以下一些功能:
用驅動程序來推進進程間的通信。
通過共享內存來提高性能。
為進程請求分配每個進程的線程池。
針對系統中的對象引入了引用計數和跨進程的對象引用映射。
進程間同步調用。
Android Binder設計與實現 – 設計篇:
目前linux支持的IPC包括傳統的管道、System V IPC、即消息隊列/共享內存/信號量,以及socket中只有socket支持Client-Server的通信方式。
當然也可以在這些底層機制上架設一套協議來實現Client-Server通信,但這樣增加了系統的復雜性,在手機這種條件復雜,資源稀缺的環境下可靠性也難以保證。
另一方面是傳輸性能:
socket作為一款通用介面,其傳輸效率低,開銷大,主要用在跨網路的進程間通信和本機上進程間的低速通信。
消息隊列和管道採用存儲-轉發方式,即數據先從發送方緩存區拷貝到內核開辟的緩存區中,然後再從內核緩存區拷貝到接收方緩存區,
至少有兩次拷貝過程。共享內存雖然無需拷貝,但控制復雜,難以使用。
還有一點是出於安全性考慮:
Android作為一個開放式,擁有眾多開發者的平台,應用程序的來源廣泛,確保智能終端的安全是非常重要的。
終端用戶不希望從網上下載的程序在不知情的情況下偷窺隱私數據,連接無線網路,長期操作底層設備導致電池很快耗盡等等。傳統IPC沒有任何
安全措施,完全依賴上層協議來確保。首先傳統IPC的接收方無法獲得對方進程可靠的UID/PID(用戶ID/進程ID),從而無法鑒別對方身份。
Android為每個安裝好的應用程序分配了自己的UID,故進程的UID是鑒別進程身份的重要標志。使用傳統IPC只能由用戶在數據包里填入UID/PID,
但這樣不可靠,容易被惡意程序利用。可靠的身份標記只有由IPC機制本身在內核中添加。其次傳統IPC訪問接入點是開放的,無法建立私有通道。
比如命名管道的名稱、system V的鍵值、socket的ip地址或文件名都是開放的,只要知道這些接入點的程序都可以和對端建立連接,不管怎樣都無法
阻止惡意程序通過猜測接收方地址獲得連接。
基於以上原因,Android需要建立一套新的IPC機制來滿足系統對通信方式,傳輸性能和安全性的要求,這就是Binder。
Binder基於 Client-Server通信模式,傳輸過程只需一次拷貝,為發送發添加UID/PID身份,既支持實名Binder也支持匿名Binder,安全性高。
面向對象的 Binder IPC:
面向對象思想的引入將進程間通信轉化為通過對某個Binder對象的引用調用該對象的方法,而其獨特之處在於Binder對象是一個
可以跨進程引用的對象,它的實體位於一個進程中,而它的引用卻遍布於系統的各個進程之中。最誘人的是,這個引用和java里引用
一樣既可以是強類型,也可以是弱類型,而且可以從一個進程傳給其它進程,讓大家都能訪問同一Server,就像將一個對象或引用賦
值給另一個引用一樣。Binder模糊了進程邊界,淡化了進程間通信過程,整個系統彷彿運行於同一個面向對象的程序之中。
面向對象只是針對應用程序而言,對於Binder驅動和內核其它模塊一樣使用C語言實現,沒有類和對象的概念。
Binder驅動為面向對象的進程間通信提供底層支持。
Ⅵ 安卓JAVA語句怎麼理解binderService = ((BindService.LocalBinder)service).getService();
binderService = ((BindService.LocalBinder)service).getService();
先將service轉為BindService.LocalBinder,後調用getService()方法,獲取binderService。
強制類型轉換首先你要保證這個對象可能可以轉為強制的對象。
Ⅶ 如何在Android源碼里查找Java中native方法對應的C++實現
在Android源碼里,有許多方法都是使用Jni機制調用底層的C++實現,比如大家都很熟悉的Binder.java里,就有
public static final native int getCallingPid();
public static final native int getCallingUid();
public static final native long clearCallingIdentity();
等方法都是直接調用C++里的實現。
通過下面命令可以很快找到對應的實現,
. build/envsetup
cgrep ./frameworks '"getCallingPid"'
這時會查找到如下結果:
./frameworks/base/core/jni/android_util_Binder.cpp:745: { "getCallingPid", "()I", (void*)android_os_Binder_getCallingPid },
這樣就可以知道對應的C++實現方法名字為android_os_Binder_getCallingPid, 在該文件中找這個方法的實現即可。
Ⅷ 在Java中,如何比較兩種數據類型是否屬於同一種數據類型
對於兩個
引用類型
對象obj1和obj2,判斷它們的運行時類是否相同:
obj1.getClass() == obj2.getClass()對於一個基本類型對象
pt1
以及一個引用類型對象obj2,它們的類型必然不同,無需判斷。
對於兩個基本類型對象pt1以及
pt2
,它們的定義必然已經出現在方法定義中或是類定義的代碼中,同樣無需判斷。
Ⅸ 為什麼 Android 要採用 Binder 作為 IPC 機制
一)從性能的角度 數據拷貝次數:Binder數據拷貝只需要一次,而管道、消息隊列、Socket都需要二次,但共享內存方式一次內存拷貝都不需要;從性能角度看,Binder性能僅次於共享內存。 (二)從穩定性的角度 Binder是基於C/S架構的,簡單解釋下C/S架構,是指客戶端(Client)和服務端(Server)組成的架構,Client端有什麼需求,直接發送給Server端去完成,架構清晰明朗,Server端與Client端相對獨立,穩定性較好;而共享內存實現方式復雜,沒有客戶與服務端之別, 需要充分考慮到訪問臨界資源的並發同步問題,否則可能會出現死鎖等問題;從這穩定性角度看,Binder架構優越於共享內存。 僅僅從以上兩點,各有優劣,還不足以支撐google去採用binder的IPC機制,那麼更重要的原因是: (三)從安全的角度 傳統Linux IPC的接收方無法獲得對方進程可靠的UID/PID,從而無法鑒別對方身份;而Android作為一個開放的開源體系,擁有非常多的開發平台,App來源甚廣,因此手機的安全顯得額外重要;對於普通用戶,絕不希望從App商店下載偷窺隱射數據、後台造成手機耗電等等問題,傳統Linux IPC無任何保護措施,完全由上層協議來確保。 Android為每個安裝好的應用程序分配了自己的UID,故進程的UID是鑒別進程身份的重要標志,前面提到C/S架構,Android系統中對外只暴露Client端,Client端將任務發送給Server端,Server端會根據許可權控制策略,判斷UID/PID是否滿足訪問許可權,目前許可權控制很多時候是通過彈出許可權詢問對話框,讓用戶選擇是否運行。Android 陸.0,也稱為Android M,在陸.0之前的系統是在App第一次安裝時,會將整個App所涉及的所有許可權一次詢問,只要留意看會發現很多App根本用不上通信錄和簡訊,但在這一次性許可權許可權時會包含進去,讓用戶拒絕不得,因為拒絕後App無法正常使用,而一旦授權後,應用便可以胡作非為。 針對這個問題,google在Android M做了調整,不再是安裝時一並詢問所有許可權,而是在App運行過程中,需要哪個許可權再彈框詢問用戶是否給相應的許可權,對許可權做了更細地控制,讓用戶有了更多的可控性,但同時也帶來了另一個用戶詬病的地方,那也就是許可權詢問的彈框的次數大幅度增多。對於Android M平台上,有些App開發者可能會寫出讓手機異常頻繁彈框的App,企圖直到用戶授權為止,這對用戶來說是不能忍的,用戶最後吐槽的可不光是App,還有Android系統以及手機廠商,有些用戶可能就跳果粉了,這還需要廣大Android開發者以及手機廠商共同努力,共同打造安全與體驗俱佳的Android手機。 Android中許可權控制策略有SELinux等多方面手段,下面列舉從Binder的一個角度的許可權控制: Android源碼的Binder許可權是如何控制? -Gityuan的回答 傳統IPC只能由用戶在數據包里填入UID/PID;另外,可靠的身份標記只有由IPC機制本身在內核中添加。其次傳統IPC訪問接入點是開放的,無法建立私有通道。從安全形度,Binder的安全性更高。 說到這,可能有人要反駁,Android就算用了Binder架構,而現如今Android手機的各種流氓軟體,不就是干著這種偷窺隱射,後台偷偷跑流量的事嗎?沒錯,確實存在,但這不能說Binder的安全性不好,因為Android系統仍然是掌握主控權,可以控制這類App的流氓行為,只是對於該採用何種策略來控制,在這方面android的確存在很多有待進步的空間,這也是google以及各大手機廠商一直努力改善的地方之一。在Android 陸.0,google對於app的許可權問題作為較多的努力,大大收緊的應用許可權;另外,在Google舉辦的Android Bootcamp 二0一陸大會中,google也表示在Android 漆.0 (也叫Android N)的許可權隱私方面會進一步加強加固,比如SELinux,Memory safe language(還在research中)等等,在今年的5月一吧日至5月二0日,google將推出Android N。 (四)從語言層面的角度 大家多知道Linux是基於C語言(面向過程的語言),而Android是基於Java語言(面向對象的語句),而對於Binder恰恰也符合面向對象的思想,將進程間通信轉化為通過對某個Binder對象的引用調用該對象的方法,而其獨特之處在於Binder對象是一個可以跨進程引用的對象,它的實體位於一個進程中,而它的引用卻遍布於系統的各個進程之中。可以從一個進程傳給其它進程,讓大家都能訪問同一Server,就像將一個對象或引用賦值給另一個引用一樣。Binder模糊了進程邊界,淡化了進程間通信過程,整個系統彷彿運行於同一個面向對象的程序之中。從語言層面,Binder更適合基於面向對象語言的Android系統,對於Linux系統可能會有點「水土不服」。 另外,Binder是為Android這類系統而生,而並非Linux社區沒有想到Binder IPC機制的存在,對於Linux社區的廣大開發人員,我還是表示深深佩服,讓世界有了如此精湛而美妙的開源系統。也並非Linux現有的IPC機制不夠好,相反地,經過這么多優秀工程師的不斷打磨,依然非常優秀,每種Linux的IPC機制都有存在的價值,同時在Android系統中也依然採用了大量Linux現有的IPC機制,根據每類IPC的原理特性,因時制宜,不同場景特性往往會採用其下最適宜的。比如在Android OS中的Zygote進程的IPC採用的是Socket(套接字)機制,Android中的Kill Process採用的signal(信號)機制等等。而Binder更多則用在system_server進程與上層App層的IPC交互。 (5) 從公司戰略的角度 總所周知,Linux內核是開源的系統,所開放源代碼許可協議GPL保護,該協議具有「病毒式感染」的能力,怎麼理解這句話呢?受GPL保護的Linux Kernel是運行在內核空間,對於上層的任何類庫、服務、應用等運行在用戶空間,一旦進行SysCall(系統調用),調用到底層Kernel,那麼也必須遵循GPL協議。 而Android 之父 Andy Rubin對於GPL顯然是不能接受的,為此,Google巧妙地將GPL協議控制在內核空間,將用戶空間的協議採用Apache-二.0協議(允許基於Android的開發商不向社區反饋源碼),同時在GPL協議與Apache-二.0之間的Lib庫中採用BSD證授權方法,有效隔斷了GPL的傳染性,仍有較大爭議,但至少目前緩解Android,讓GPL止步於內核空間,這是Google在GPL Linux下 開源與商業化共存的一個成功典範
Ⅹ java binder回調是非同步的嗎
1、回調的實現
/**
* 回調介面
*/
public interface CallBack {
/**
* 執行回調方法
* @param objects 將處理後的結果作為參數返回給回調方法
*/
public void execute(Object... objects );
}