1. python 爬蟲headers 怎麼寫
參考chrome瀏覽器調試模式(F12)下,NetWork下請求的headers參數。
主要有:
User-Agent:
Accept:
Accept-Encoding:
Accept-Language:
2. python爬蟲中怎麼寫反爬蟲
1、通過UA判斷:UA是UserAgent,是要求瀏覽器的身份標志。
UA是UserAgent,是要求瀏覽器的身份標志。反爬蟲機制通過判斷訪問要求的頭部沒有UA來識別爬蟲,這種判斷方法水平很低,通常不作為唯一的判斷標准。反爬蟲非常簡單,可以隨機數UA。
2、通過Cookie判定:Cookie是指會員帳戶密碼登錄驗證
Cookie是指會員帳戶密碼登錄驗證,通過區分該帳戶在短時間內爬行的頻率來判斷。這種方法的反爬蟲也很困難,需要多賬戶爬行。
3、通過訪問頻率判定
爬蟲類經常在短時間內多次訪問目標網站,反爬蟲類機制可以通過單個IP訪問的頻率來判斷是否是爬蟲類。這樣的反爬方式難以反制,只能通過更換IP來解決。
4、通過驗證碼判定
驗證碼是反爬蟲性價比高的實施方案。反爬蟲通常需要訪問OCR驗證碼識別平台,或者使用TesseractOCR識別,或者使用神經網路訓練識別驗證碼。
5、動態性頁面載入
使用動態載入的網站通常是為了方便用戶點擊和查看,爬蟲無法與頁面互動,這大大增加了爬蟲的難度。
一般情況下,用戶對網站進行信息爬取時,都要受到「爬蟲」的約束,使用戶在獲取信息時受到一定的阻礙
3. 如何用Python編寫一個簡單的爬蟲
以下代碼運行通過:
importre
importrequests
defShowCity():
html=requests.get("http://www.tianqihoubao.com/weather/province.aspx?id=110000")
citys=re.findall('<tdstyle="height:22px"align="center"><ahref="http://blog.163.com/lucia_gagaga/blog/(.*?)">',html.text,re.S)
forcityincitys:
print(city)
ShowCity()
運行效果:
4. python爬蟲header怎麼寫
以上截圖為大概格式,代碼為python3版本。header寫法。
5. Python爬蟲好寫嗎
python爬蟲不簡單的,基礎爬蟲:
(1)基礎庫:urllib模塊/requests第三方模塊
首先爬蟲就是要從網頁上把我們需要的信息抓取下來的,那麼我們就要學習urllib/requests模塊,這兩種模塊是負責爬取網頁的。這里大家覺得哪一種用的習慣就用哪一種,選擇一種精通就好了。我推薦讀者使用使用requests模塊,因為這一種簡便很多,容易操作、容易理解,所以requests被稱為「人性化模塊」。
(2)多進程、多線程、協程和分布式進程:
為什麼要學著四個知識呢?假如你要爬取200萬條的數據,使用一般的單進程或者單線程的話,你爬取下載這些數據,也許要一個星期或是更久。試問這是你想要看到的結果嗎?顯然單進程和單線程不要滿足我們追求的高效率,太浪費時間了。只要設置好多進程和多線程,爬取數據的速度可以提高10倍甚至更高的效率。
(3)網頁解析提取庫:xpath/BeautifulSoup4/正則表達式
通過前面的(1)和(2)爬取下來的是網頁源代碼,這里有很多並不是我們想要的信息,所以需要將沒用的信息過濾掉,留下對我們有價值的信息。這里有三種解析器,三種在不同的場景各有特色也各有不足,總的來說,學會這三種靈活運用會很方便的。推薦理解能力不是很強的朋友或是剛入門爬蟲的朋友,學習BeautifulSoup4是很容易掌握並能夠快速應用實戰的,功能也非常強大。
(4)反屏蔽:請求頭/代理伺服器/cookie
在爬取網頁的時候有時會失敗,因為別人網站設置了反爬蟲措施了,這個時候就需要我們去偽裝自己的行為,讓對方網站察覺不到我們就是爬蟲方。請求頭設置,主要是模擬成瀏覽器的行為;IP被屏蔽了,就需要使用代理伺服器來破解;而cookie是模擬成登錄的行為進入網站。
(5)異常:超時處理/異常處理,這里不做介紹了,自己去了解一下。
(6)數據儲存庫:文件系統儲存/MySQL/MongoDB
數據的儲存大概就這三種方式了,文件系統儲存是運用了python文件操作來執行的;而MySQL要使用到資料庫創建表格來儲存數據;MongoDB在爬蟲里是非常好的儲存方式,分布式爬蟲就是運用了MongoDB來儲存的。各有特色,看自己需要哪種,在靈活運用。
(7)動態網頁抓取:Ajax/PhantomJS/Selenium這三個知識點
(8)抓包:APP抓包/API爬蟲
(9)模擬登陸的 爬蟲
6. python爬蟲的工作步驟
當前處於一個大數據的時代,一般網站數據來源有二:網站用戶自身產生的數據和網站從其他來源獲取的數據,今天要分享的是如何從其他網站獲取你想要的數據。
目前最適合用於寫爬蟲的語言是python,python中最受歡迎的爬蟲框架是scrapy,本文圍繞scrapy來展開講解爬蟲是怎麼工作的。
1.如下圖所示,爬蟲從編寫的spider文件中的start_urls開始,這個列表中的url就是爬蟲抓取的第一個網頁,它的返回值是該url對應網頁的源代碼,我們可以用默認的parse(self,response)函數去列印或解析這個源代碼
2.我們獲取到源代碼之後,就可以從網頁源代碼中找到我們想要的信息或需要進一步訪問的url,提取信息這一步,scrapy中集成了xpath,正則(re),功能十分強大,提取到信息之後會通過yield進入到中間件當中。
中間件包括爬蟲中間件和下載中間件,爬蟲中間件主要用於設置處理爬蟲文件中的代碼塊,下載中間件主要用於判斷爬蟲進入網頁前後的爬取狀態,在此中間件中,你可以根據爬蟲的返回狀態去做進一步判斷。
最後我們將yield過來的item,即就是我們想要的數據會在pipeline.py文件中進行處理,存入資料庫,寫入本地文件,都可以在這里進行,另外,為了減少代碼冗餘,建議所有與設置參數有關的參數,都寫在settings.py中去
7. Python爬蟲程序要用到哪些知識和技術
1.對網頁結構需要有一個基本的了解和認知。
我們平時上網瀏覽網頁,信息展現在瀏覽器裡面的頁面中,但我們用爬蟲要抓取的信息是放在網頁源代碼裡面的。(圖1為我們看到的頁面,圖2
為頁面對應的網頁源代碼)
在瀏覽器中使用快捷鍵F12來調出該界面,這個界面稱為開發者模式
2.知道如何去找到我們需要的信息在網頁源代碼的那個位置。
一般來說信息可能直接存在於網頁的html頁面中,但是有一些動態載入的信息可能存在於js頁面中。有一些網站,它的數據價值比較高,總會有競爭對手去抓取它的數據,所以它就會有比較厲害的反抓取措施,一般新手很難應付這種反抓取措施。一般的靜態網頁要求你對瀏覽器的開發者模式很熟悉,能夠利用這個工具去定位自己需要的信息在網頁源代碼中的那個位置,網上有相關教程,搜一下就能找到,更復雜的動態網頁,就需要你對動態載入的網頁有點研究才行。這些知識點和技能,都是需要自己動手去嘗試才能學會的。
3.知道用什麼python程序庫去完成網頁源代碼的下載,解析,數據提取,存儲。
python是一門很簡單的編程語言,一方面是因為python的語法簡潔,另一方面是因為在python社區,已經有很多很多的人為我們貢獻了很多很多開源的程序庫,我們在編寫程序的時候,直接調用這些程序庫,就能夠省下很多很多工作量。
8. 如何用python寫出爬蟲
先檢查是否有API
API是網站官方提供的數據介面,如果通過調用API採集數據,則相當於在網站允許的范圍內採集,這樣既不會有道德法律風險,也沒有網站故意設置的障礙;不過調用API介面的訪問則處於網站的控制中,網站可以用來收費,可以用來限制訪問上限等。整體來看,如果數據採集的需求並不是很獨特,那麼有API則應優先採用調用API的方式。
數據結構分析和數據存儲
爬蟲需求要十分清晰,具體表現為需要哪些欄位,這些欄位可以是網頁上現有的,也可以是根據網頁上現有的欄位進一步計算的,這些欄位如何構建表,多張表如何連接等。值得一提的是,確定欄位環節,不要只看少量的網頁,因為單個網頁可以缺少別的同類網頁的欄位,這既有可能是由於網站的問題,也可能是用戶行為的差異,只有多觀察一些網頁才能綜合抽象出具有普適性的關鍵欄位——這並不是幾分鍾看幾個網頁就可以決定的簡單事情,如果遇上了那種臃腫、混亂的網站,可能坑非常多。
對於大規模爬蟲,除了本身要採集的數據外,其他重要的中間數據(比如頁面Id或者url)也建議存儲下來,這樣可以不必每次重新爬取id。
資料庫並沒有固定的選擇,本質仍是將Python里的數據寫到庫里,可以選擇關系型資料庫MySQL等,也可以選擇非關系型資料庫MongoDB等;對於普通的結構化數據一般存在關系型資料庫即可。sqlalchemy是一個成熟好用的資料庫連接框架,其引擎可與Pandas配套使用,把數據處理和數據存儲連接起來,一氣呵成。
數據流分析
對於要批量爬取的網頁,往上一層,看它的入口在哪裡;這個是根據採集范圍來確定入口,比如若只想爬一個地區的數據,那從該地區的主頁切入即可;但若想爬全國數據,則應更往上一層,從全國的入口切入。一般的網站網頁都以樹狀結構為主,找到切入點作為根節點一層層往裡進入即可。
值得注意的一點是,一般網站都不會直接把全量的數據做成列表給你一頁頁往下翻直到遍歷完數據,比如鏈家上面很清楚地寫著有24587套二手房,但是它只給100頁,每頁30個,如果直接這么切入只能訪問3000個,遠遠低於真實數據量;因此先切片,再整合的數據思維可以獲得更大的數據量。顯然100頁是系統設定,只要超過300個就只顯示100頁,因此可以通過其他的篩選條件不斷細分,只到篩選結果小於等於300頁就表示該條件下沒有缺漏;最後把各種條件下的篩選結果集合在一起,就能夠盡可能地還原真實數據量。
明確了大規模爬蟲的數據流動機制,下一步就是針對單個網頁進行解析,然後把這個模式復制到整體。對於單個網頁,採用抓包工具可以查看它的請求方式,是get還是post,有沒有提交表單,欲採集的數據是寫入源代碼里還是通過AJAX調用JSON數據。
同樣的道理,不能只看一個頁面,要觀察多個頁面,因為批量爬蟲要弄清這些大量頁面url以及參數的規律,以便可以自動構造;有的網站的url以及關鍵參數是加密的,這樣就悲劇了,不能靠著明顯的邏輯直接構造,這種情況下要批量爬蟲,要麼找到它加密的js代碼,在爬蟲代碼上加入從明文到密碼的加密過程;要麼採用下文所述的模擬瀏覽器的方式。
數據採集
之前用R做爬蟲,不要笑,R的確可以做爬蟲工作;但在爬蟲方面,Python顯然優勢更明顯,受眾更廣,這得益於其成熟的爬蟲框架,以及其他的在計算機系統上更好的性能。scrapy是一個成熟的爬蟲框架,直接往裡套用就好,比較適合新手學習;requests是一個比原生的urllib包更簡潔強大的包,適合作定製化的爬蟲功能。requests主要提供一個基本訪問功能,把網頁的源代碼給download下來。一般而言,只要加上跟瀏覽器同樣的Requests Headers參數,就可以正常訪問,status_code為200,並成功得到網頁源代碼;但是也有某些反爬蟲較為嚴格的網站,這么直接訪問會被禁止;或者說status為200也不會返回正常的網頁源碼,而是要求寫驗證碼的js腳本等。
下載到了源碼之後,如果數據就在源碼中,這種情況是最簡單的,這就表示已經成功獲取到了數據,剩下的無非就是數據提取、清洗、入庫。但若網頁上有,然而源代碼里沒有的,就表示數據寫在其他地方,一般而言是通過AJAX非同步載入JSON數據,從XHR中找即可找到;如果這樣還找不到,那就需要去解析js腳本了。
解析工具
源碼下載後,就是解析數據了,常用的有兩種方法,一種是用BeautifulSoup對樹狀HTML進行解析,另一種是通過正則表達式從文本中抽取數據。
BeautifulSoup比較簡單,支持Xpath和CSSSelector兩種途徑,而且像Chrome這類瀏覽器一般都已經把各個結點的Xpath或者CSSSelector標記好了,直接復制即可。以CSSSelector為例,可以選擇tag、id、class等多種方式進行定位選擇,如果有id建議選id,因為根據HTML語法,一個id只能綁定一個標簽。
正則表達式很強大,但構造起來有點復雜,需要專門去學習。因為下載下來的源碼格式就是字元串,所以正則表達式可以大顯身手,而且處理速度很快。
對於HTML結構固定,即同樣的欄位處tag、id和class名稱都相同,採用BeautifulSoup解析是一種簡單高效的方案,但有的網站混亂,同樣的數據在不同頁面間HTML結構不同,這種情況下BeautifulSoup就不太好使;如果數據本身格式固定,則用正則表達式更方便。比如以下的例子,這兩個都是深圳地區某個地方的經度,但一個頁面的class是long,一個頁面的class是longitude,根據class來選擇就沒辦法同時滿足2個,但只要注意到深圳地區的經度都是介於113到114之間的浮點數,就可以通過正則表達式"11[3-4].\d+"來使兩個都滿足。
數據整理
一般而言,爬下來的原始數據都不是清潔的,所以在入庫前要先整理;由於大部分都是字元串,所以主要也就是字元串的處理方式了。
字元串自帶的方法可以滿足大部分簡單的處理需求,比如strip可以去掉首尾不需要的字元或者換行符等,replace可以將指定部分替換成需要的部分,split可以在指定部分分割然後截取一部分。
如果字元串處理的需求太復雜以致常規的字元串處理方法不好解決,那就要請出正則表達式這個大殺器。
Pandas是Python中常用的數據處理模塊,雖然作為一個從R轉過來的人一直覺得這個模仿R的包實在是太難用了。Pandas不僅可以進行向量化處理、篩選、分組、計算,還能夠整合成DataFrame,將採集的數據整合成一張表,呈現最終的存儲效果。
寫入資料庫
如果只是中小規模的爬蟲,可以把最後的爬蟲結果匯合成一張表,最後導出成一張表格以便後續使用;但對於表數量多、單張表容量大的大規模爬蟲,再導出成一堆零散的表就不合適了,肯定還是要放在資料庫中,既方便存儲,也方便進一步整理。
寫入資料庫有兩種方法,一種是通過Pandas的DataFrame自帶的to_sql方法,好處是自動建表,對於對表結構沒有嚴格要求的情況下可以採用這種方式,不過值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否則報錯,雖然這個認為不太合理;另一種是利用資料庫引擎來執行SQL語句,這種情況下要先自己建表,雖然多了一步,但是表結構完全是自己控制之下。Pandas與SQL都可以用來建表、整理數據,結合起來使用效率更高。