導航:首頁 > 編程語言 > python做圖像拼接

python做圖像拼接

發布時間:2022-05-27 08:43:37

『壹』 這個python拼接圖像的程序具體大概是什麼意思呢

這事opencv處理圖片,你去看opencv相關內容,不難理解

『貳』 python 怎麼把多個視頻拼接

用視頻剪輯軟體拼接就好了
方法如下:
1、打開 愛剪輯 ,導入需要拼接的視頻
2、利用創新式時間軸和超級剪刀手裁剪好視頻後,點擊導出視頻按鈕即可

『叄』 請問如何將此圖用php或者python復原

它這是把圖片16等分(寬、高各四等分),然後把它們的順序隨機打亂,那串逗號分隔的數字記錄的就是它們的實際編號。
最簡單的還原方法,就是在html前端直接利用css3的background-position屬性結合background-size屬性進行顯示。當然這個方法並沒有實際改變圖片。
要想實際改變圖片,就要利用php的圖片處理方法進行拼接。限於篇幅,這里沒法提供代碼,自己去研究吧。

『肆』 請問可以用python實現將大圖片變成小圖片處理嗎,這邊要做一個圖像識別,太大的解析度運行慢

python有一個圖像處理庫——PIL,可以處理圖像文件。PIL提供了功能豐富的方法,比如格式轉換、旋轉、裁剪、改變尺寸、像素處理、圖片合並等等等等,非常強大。
舉個簡單的例子,調整圖片的大小:

12345678910111213141516171819
import Image infile = 'D:\\original_img.jpg'outfile = 'D:\\adjust_img.jpg'im = Image.open(infile)(x,y) = im.size #read image sizex_s = 250 #define standard widthy_s = y * x_s / x #calc height based on standard widthout = im.resize((x_s,y_s),Image.ANTIALIAS) #resize image with high-qualityout.save(outfile) print 'original size: ',x,yprint 'adjust size: ',x_s,y_s '''OUTPUT:original size: 500 358adjust size: 250 179'''

『伍』 python拼接list,如何將A1,A2,A3拼成一個[A1,A2,A3]

>>>branchlist=[['a1','b1'],['a2','b2'],['a3','b3']]
>>>a,b=zip(*branchlist)
>>>a
('a1','a2','a3')
>>>b
('b1','b2','b3')
>>>

『陸』 python處理圖片數據

目錄

1.機器是如何存儲圖像的?

2.在Python中讀取圖像數據

3.從圖像數據中提取特徵的方法#1:灰度像素值特徵

4.從圖像數據中提取特徵的方法#2:通道的平均像素值

5.從圖像數據中提取特徵的方法#3:提取邊緣
是一張數字8的圖像,仔細觀察就會發現,圖像是由小方格組成的。這些小方格被稱為像素。

但是要注意,人們是以視覺的形式觀察圖像的,可以輕松區分邊緣和顏色,從而識別圖片中的內容。然而機器很難做到這一點,它們以數字的形式存儲圖像。請看下圖:

機器以數字矩陣的形式儲存圖像,矩陣大小取決於任意給定圖像的像素數。

假設圖像的尺寸為180 x 200或n x m,這些尺寸基本上是圖像中的像素數(高x寬)。

這些數字或像素值表示像素的強度或亮度,較小的數字(接近0)表示黑色,較大的數字(接近255)表示白色。通過分析下面的圖像,讀者就會弄懂到目前為止所學到的知識。

下圖的尺寸為22 x 16,讀者可以通過計算像素數來驗證:

圖片源於機器學習應用課程

剛才討論的例子是黑白圖像,如果是生活中更為普遍的彩色呢?你是否認為彩色圖像也以2D矩陣的形式存儲?

彩色圖像通常由多種顏色組成,幾乎所有顏色都可以從三原色(紅色,綠色和藍色)生成。

因此,如果是彩色圖像,則要用到三個矩陣(或通道)——紅、綠、藍。每個矩陣值介於0到255之間,表示該像素的顏色強度。觀察下圖來理解這個概念:

圖片源於機器學習應用課程

左邊有一幅彩色圖像(人類可以看到),而在右邊,紅綠藍三個顏色通道對應三個矩陣,疊加三個通道以形成彩色圖像。

請注意,由於原始矩陣非常大且可視化難度較高,因此這些不是給定圖像的原始像素值。此外,還可以用各種其他的格式來存儲圖像,RGB是最受歡迎的,所以筆者放到這里。讀者可以在此處閱讀更多關於其他流行格式的信息。

用Python讀取圖像數據

下面開始將理論知識付諸實踐。啟動Python並載入圖像以觀察矩陣:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)

#checking image shape
image.shape, image

(28,28)

矩陣有784個值,而且這只是整個矩陣的一小部分。用一個LIVE編碼窗口,不用離開本文就可以運行上述所有代碼並查看結果。

下面來深入探討本文背後的核心思想,並探索使用像素值作為特徵的各種方法。

方法#1:灰度像素值特徵

從圖像創建特徵最簡單的方法就是將原始的像素用作單獨的特徵。

考慮相同的示例,就是上面那張圖(數字『8』),圖像尺寸為28×28。

能猜出這張圖片的特徵數量嗎?答案是與像素數相同!也就是有784個。

那麼問題來了,如何安排這784個像素作為特徵呢?這樣,可以簡單地依次追加每個像素值從而生成特徵向量。如下圖所示:

下面來用Python繪制圖像,並為該圖像創建這些特徵:

image = imread('puppy.jpeg', as_gray=True)

image.shape, imshow(image)

(650,450)

該圖像尺寸為650×450,因此特徵數量應為297,000。可以使用NumPy中的reshape函數生成,在其中指定圖像尺寸:

#pixel features

features = np.reshape(image, (660*450))

features.shape, features

(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])

這里就得到了特徵——長度為297,000的一維數組。很簡單吧?在實時編碼窗口中嘗試使用此方法提取特徵。

但結果只有一個通道或灰度圖像,對於彩色圖像是否也可以這樣呢?來看看吧!

方法#2:通道的平均像素值

在讀取上一節中的圖像時,設置了參數『as_gray = True』,因此在圖像中只有一個通道,可以輕松附加像素值。下面刪除參數並再次載入圖像:

image = imread('puppy.jpeg')
image.shape

(660, 450, 3)

這次,圖像尺寸為(660,450,3),其中3為通道數量。可以像之前一樣繼續創建特徵,此時特徵數量將是660*450*3 = 891,000。

或者,可以使用另一種方法:

生成一個新矩陣,這個矩陣具有來自三個通道的像素平均值,而不是分別使用三個通道中的像素值。

下圖可以讓讀者更清楚地了解這一思路:

這樣一來,特徵數量保持不變,並且還能考慮來自圖像全部三個通道的像素值。

image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape

(660, 450)

現有一個尺寸為(660×450×3)的三維矩陣,其中660為高度,450為寬度,3是通道數。為獲取平均像素值,要使用for循環:

for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)

新矩陣具有相同的高度和寬度,但只有一個通道。現在,可以按照與上一節相同的步驟進行操作。依次附加像素值以獲得一維數組:

features = np.reshape(feature_matrix, (660*450))
features.shape

(297000,)

方法#3:提取邊緣特徵

請思考,在下圖中,如何識別其中存在的對象:

識別出圖中的對象很容易——狗、汽車、還有貓,那麼在區分的時候要考慮哪些特徵呢?形狀是一個重要因素,其次是顏色,或者大小。如果機器也能像這樣識別形狀會怎麼樣?

類似的想法是提取邊緣作為特徵並將其作為模型的輸入。稍微考慮一下,要如何識別圖像中的邊緣呢?邊緣一般都是顏色急劇變化的地方,請看下圖:

筆者在這里突出了兩個邊緣。這兩處邊緣之所以可以被識別是因為在圖中,可以分別看到顏色從白色變為棕色,或者由棕色變為黑色。如你所知,圖像以數字的形式表示,因此就要尋找哪些像素值發生了劇烈變化。

假設圖像矩陣如下:

圖片源於機器學習應用課程

該像素兩側的像素值差異很大,於是可以得出結論,該像素處存在顯著的轉變,因此其為邊緣。現在問題又來了,是否一定要手動執行此步驟?

當然不!有各種可用於突出顯示圖像邊緣的內核,剛才討論的方法也可以使用Prewitt內核(在x方向上)來實現。以下是Prewitt內核:

獲取所選像素周圍的值,並將其與所選內核(Prewitt內核)相乘,然後可以添加結果值以獲得最終值。由於±1已經分別存在於兩列之中,因此添加這些值就相當於獲取差異。

還有其他各種內核,下面是四種最常用的內核:

圖片源於機器學習應用課程

現在回到筆記本,為同一圖像生成邊緣特徵:

#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline

#reading the image
image = imread('puppy.jpeg',as_gray=True)

#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)

imshow(edges_prewitt_vertical, cmap='gray')

『柒』 python可以用來處理圖像嗎

可以的,
PythonWare公司提供了免費的Python圖像處理工具包PIL(Python Image Library),該軟體包提供了基本的圖像處理功能,如:

改變圖像大小,旋轉圖像,圖像格式轉換,色場空間轉換,圖像增強,直方圖處理,插值和濾波等等。雖然在這個軟體包上要實現類似MATLAB中的復雜的圖像處理演算法並不太適合,但是Python的快速開發能力以及面向對象等等諸多特點使得它非常適合用來進行原型開發。

在PIL中,任何一副圖像都是用一個Image對象表示,而這個類由和它同名的模塊導出,因此,最簡單的形式是這樣的:

import Image img = Image.open(「dip.jpg」)
注意:第一行的Image是模塊名;第二行的img是一個Image對象;
Image類是在Image模塊中定義的。關於Image模塊和Image類,切記不要混淆了。現在,我們就可以對img進行各種操作了,所有對img的
操作最終都會反映到到dip.img圖像上。

PIL提供了豐富的功能模塊:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模塊是
Image,ImageDraw,ImageEnhance這三個模塊。下面我對此分別做一介紹。關於其它模塊的使用請參見說明文檔.有關PIL軟體包和
相關的說明文檔可在PythonWare的站點www.Pythonware.com上獲得。

Image模塊:

Image模塊是PIL最基本的模塊,其中導出了Image類,一個Image類實例對象就對應了一副圖像。同時,Image模塊還提供了很多有用的函數。

(1)打開一文件:
import Image img = Image.open(「dip.jpg」)

這將返回一個Image類實例對象,後面的所有的操作都是在img上完成的。

(2)調整文件大小:

import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")

原來的圖像大小是256x256,現在,保存的new_img.jpg的大小是128x128。

就是這么簡單,需要說明的是Image.BILINEAR指定採用雙線性法對像素點插值。

在批處理或者簡單的Python圖像處理任務中,採用Python和PIL(Python Image Library)的組合來完成圖像處理任務是一個很不錯的選擇。設想有一個需要對某個文件夾下的所有圖像將對比度提高2倍的任務。用Python來做將是十分簡單的。當然,我也不得不承認Python在圖像處理方面的功能還比較弱,顯然還不適合用來進行濾波、特徵提取等等一些更為復雜的應用。我個人的觀點是,當你要實現這些「高級」的演算法的時候,好吧,把它交給MATLAB去完成。但是,如果你面對的只是一個通常的不要求很復雜演算法的圖像處理任務,那麼,Python圖像處理應該才是你的最佳搭檔。

『捌』 Python如何重疊圖片

from PIL import Image
import math
import os
os.chdir('圖片地址路徑')
img_A = Image.open('A圖片') #讀取圖片A
for i in [圖片名]:
img_temp = Image.open(i') #依次讀取其它圖片
final_img = Image.blend(img_A, img_temp, 0.5)
final_img.save('路徑\新的圖片名')

『玖』 python使用plotly生成了多個離線圖表,如何將他們合並成一個html做展示

本人在使用groovy爬取了全國3000+城市的歷史天氣之後,需要把每個城市的歷史天氣都繪制一張Time Series表格,用來反映各地的最高溫最低溫溫差的變化曲線。這里遇到了一個問題,每次plotly繪制完圖標總會調起系統瀏覽器打開呈現,一旦我批量生成N多張表格時,電腦就會卡死了。在使用中文作為文件名的時候遇到了一個錯誤,這個錯誤剛好能巧妙解決這個問題。在不同編碼格式的字元拼接時文件路徑時,會報錯,報錯內容如下:

'ascii' codec can't encode characters in position 69-70: ordinal not in range(128)

然後程序停止運行,但是文件已經生成了。在做了異常處理後,剛好能滿足需求。關於python2.7的編碼問題,並不是很了解為什麼出這個錯。有大神了解的可以分享一下。

python部分的代碼如下:

#!/usr/bin/python

# coding=utf-8

from first.date import DatePlot

import os

from second.MysqlFission import MysqlFission

import shutil

import time

class Fission:

x = []

y = []

z = []

d = []

def __init__(self):

print "歡迎使用fission類!"

# def __init__(self,x,y,z,d):

# def __init__(self,name):

# self.name = name

# print "歡迎使用fission類!"

def getData(self, name):

size = 0;

with open("/Users/Vicky/Documents/workspace/source_api/long/" + name + ".log") as apidata:

for i in apidata:

data = i.split(" ")[0].split("|")[0]

low = i.split(" ")[0].split("|")[1]

high = i.split(" ")[0].split("|")[2]

diff = int(high) - int(low)

self.x.append(data)

self.y.append(low)

self.z.append(high)

self.d.append(diff)

size += 1;

def getDataMarkLine(self, name):

with open("/Users/Vicky/Documents/workspace/source_api/long/" + name + ".log") as apidata:

for i in apidata:

data = i.split(" ")[0].split("|")

day = data[0]

time = float(data[1])

self.x.append(day)

self.y.append(time)

return [self.x, self.y]

if __name__ == "__main__":

names = []

for name in names:

name = u"三沙"

sql = MysqlFission()

sql.getWeather(name)

fission = Fission()

fission.x = []

fission.y = []

fission.z = []

fission.d = []

fission.getData(name)

try:

DatePlot.MakePlotTwo(fission.x, name, high=fission.y, low=fission.z, diff=fission.d)

except BaseException:

print 2

shutil.file(name + ".html", "/Users/Vicky/Desktop/w/" + name + ".html")

os.remove(name + ".html")

time.sleep(5)

下面是北京市的效果圖:

『拾』 Python不同顏色圖疊和形成另一種圖

為顏色圖模式。
在OpenCV中通常使用cvtColor()進行色彩空間的轉換,它可以實現彩色圖像在各種色彩空間里的轉換,也可以用於彩色圖像和灰度圖像之間相互轉換,但是在彩色圖像轉換到灰度圖像後,再用該灰度圖轉換回彩色圖像只是名義上多通道的彩色圖像,人眼看到的卻不是「彩色」了。
Python是一種跨平台的計算機程序設計語言是一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越多被用於獨立的、大型項目的開發。

閱讀全文

與python做圖像拼接相關的資料

熱點內容
南京中興招收專科程序員嗎 瀏覽:297
代理商php源碼 瀏覽:983
蘋果手機怎麼解壓軟體app 瀏覽:650
游戲資源被編譯 瀏覽:152
代碼編譯後黑屏 瀏覽:8
程序員情侶寫真 瀏覽:505
python3孿生素數 瀏覽:36
計算楊輝三角Python 瀏覽:404
linux目錄重命名 瀏覽:196
演算法設計的最終形態是代碼 瀏覽:262
程序員社團招新橫幅 瀏覽:238
拖鞋解壓視頻大全 瀏覽:887
租伺服器主機鏈接軟體叫什麼 瀏覽:856
交叉編譯工具的linux版本號 瀏覽:156
python開發應用軟體 瀏覽:32
hdl綜合器與c編譯器的區別 瀏覽:899
編譯原理最左推導代碼 瀏覽:702
加密三 瀏覽:131
通過編譯鏈接後形成的可執行程序 瀏覽:680
怎麼用matlab編程 瀏覽:782