① python如何圖像識別
首先,先定位好問題是屬於圖像識別任務中的哪一類,最好上傳一張植物葉子的圖片。因為目前基於深度學習的卷積神經網路(CNN)確實在圖像識別任務中取得很好的效果,深度學習屬於機器學習,其研究的範式,或者說處理圖像的步驟大體上是一致的。
1、第一步,准備好數據集,這里是指,需要知道輸入、輸出(視任務而定,針對你這個問題,建議使用有監督模型)是什麼。你可以准備一個文件夾,裡面存放好植物葉子的圖像,而每張圖像對應一個標簽(有病/沒病,或者是多類別標簽,可能具體到哪一種病)。
具體實現中,會將數據集分為三個:訓練集(計算模型參數)、驗證集(調參,這個經常可以不需要實現劃分,在python中可以用scikit-learn中的函數解決。測試集用於驗證模型的效果,與前面兩個的區別是,模型使用訓練集和驗證集時,是同時使用了輸入數據和標簽,而在測試階段,模型是用輸入+模型參數,得到的預測與真實標簽進行對比,進而評估效果。
2、確定圖像識別的任務是什麼?
圖像識別的任務可以分為四個:圖像分類、目標檢測、語義分割、實例分割,有時候是幾個任務的結合。
圖像分類是指以圖像為輸入,輸出對該圖像內容分類的描述,可以是多分類問題,比如貓狗識別。通過足夠的訓練數據(貓和狗的照片-標簽,當然現在也有一系列的方法可以做小樣本訓練,這是細節了,這里並不敞開講),讓計算機/模型輸出這張圖片是貓或者狗,及其概率。當然,如果你的訓練數據還有其它動物,也是可以的,那就是圖像多分類問題。
目標檢測指將圖像或者視頻中的目標與不感興趣的部分區分開,判斷是否存在目標,並確定目標的具體位置。比如,想要確定這只狗所佩戴的眼睛的位置,輸入一張圖片,輸出眼睛的位置(可視化後可以講目標區域框出來)。
看到這里,應該想想植物葉子診斷疾病的問題,只需要輸入一整張植物葉子的圖片,輸出是哪種疾病,還是需要先提取葉子上某些感興趣區域(可能是病變區域),在用病變區域的特徵,對應到具體的疾病?
語義分割是當今計算機視覺領域的關鍵問題之一,宏觀上看,語義分割是一項高層次的任務。其目的是以一些原始圖像作為輸入,輸出具有突出顯示的感興趣的掩膜,其實質上是實現了像素級分類。對於輸入圖片,輸出其舌頭區域(注意可以是不規則的,甚至不連續的)。
而實例分割,可以說是在語義分割的基礎上,在像素層面給出屬於每個實例的像素。
看到這里,可以具體思考下自己的問題是對應其中的哪一類問題,或者是需要幾種任務的結合。
3、實際操作
可以先通過一個簡單的例子入手,先了解構建這一個框架需要准備什麼。手寫數字識別可以說是深度學習的入門數據集,其任務也經常作為該領域入門的案例,也可以自己在網上尋找。
② 識別圖片的python代碼
網址403許可權錯誤。
如果是個人網站,建議檢查;如果僅僅是為了測試,建議將圖片上傳到圖床上測試。
提問時建議隱藏API_ID和API_KEY,保護自己的信息。
③ 如何使用Python,基於OpenCV與Face++實現人臉解鎖的功能
近幾天微軟的發布會上講到了不少認臉解鎖的內容,經過探索,其實利用手頭的資源我們完全自己也可以完成這樣一個過程。
本文講解了如何使用Python,基於OpenCV與Face++實現人臉解鎖的功能。
本文基於Python 2.7.11,Windows 8.1 系統。
主要內容
Windows 8.1上配置OpenCV
OpenCV的人臉檢測應用
使用Face++完成人臉辨識(如果你想自己實現這部分的功能,可以借鑒例如這個項目)
Windows 8.1上配置OpenCV
入門的時候配置環境總是一個非常麻煩的事情,在Windows上配置OpenCV更是如此。
既然寫了這個推廣的科普教程,總不能讓讀者卡在環境配置上吧。
下面用到的文件都可以在這里(提取碼:b6ec)下載,但是注意,目前OpenCV僅支持Python2.7。
將cv2加入site-packages
將下載下來的cv2.pyd文件放入Python安裝的文件夾下的Libsite-packages目錄。
就我的電腦而言,這個目錄就是C:/Python27/Lib/site-packages/。
記得不要直接使用pip安裝,將文件拖過去即可。
安裝numpy組件
在命令行下進入到下載下來的文件所在的目錄(按住Shift右鍵有在該目錄打開命令行的選項)
鍵入命令:
1
pip install numpy-1.11.0rc2-cp27-cp27m-win32.whl
如果你的系統或者Python不適配,可以在這里下載別的輪子。
測試OpenCV安裝
在命令行鍵入命令:
1
python -c "import cv2"
如果沒有出現錯誤提示,那麼cv2就已經安裝好了。
OpenCV的人臉檢測應用
人臉檢測應用,簡而言之就是一個在照片里找到人臉,然後用方框框起來的過程(我們的相機經常做這件事情)
那麼具體而言就是這樣一個過程:
獲取攝像頭的圖片
在圖片中檢測到人臉的區域
在人臉的區域周圍繪制方框
獲取攝像頭的圖片
這里簡單的講解一下OpenCV的基本操作。
以下操作是打開攝像頭的基本操作:
1
2
3
4
5
6
7
#coding=utf8
import cv2
# 一般筆記本的默認攝像頭都是0
capInput = cv2.VideoCapture(0)
# 我們可以用這條命令檢測攝像頭是否可以讀取數據
if not capInput.isOpened(): print('Capture failed because of camera')
那麼怎麼從攝像頭讀取數據呢?
1
2
3
4
5
6
7
8
# 接上段程序
# 現在攝像頭已經打開了,我們可以使用這條命令讀取圖像
# img就是我們讀取到的圖像,就和我們使用open('pic.jpg', 'rb').read()讀取到的數據是一樣的
ret, img = capInput.read()
# 你可以使用open的方式存儲,也可以使用cv2提供的方式存儲
cv2.imwrite('pic.jpg', img)
# 同樣,你可以使用open的方式讀取,也可以使用cv2提供的方式讀取
img = cv2.imread('pic.jpg')
為了方便顯示圖片,cv2也提供了顯示圖片的方法:
1
2
3
4
5
6
# 接上段程序
# 定義一個窗口,當然也可以不定義
imgWindowName = 'ImageCaptured'
imgWindow = cv2.namedWindow(imgWindowName, cv2.WINDOW_NORMAL)
# 在窗口中顯示圖片
cv2.imshow(imgWindowName, img)
當然在完成所有操作以後需要把攝像頭和窗口都做一個釋放:
1
2
3
4
5
# 接上段程序
# 釋放攝像頭
capInput.release()
# 釋放所有窗口
cv2.destroyAllWindows()
在圖片中檢測到人臉的區域
OpenCV給我們提供了已經訓練好的人臉的xml模板,我們只需要載入然後比對即可。
1
2
3
4
5
6
7
8
# 接上段程序
# 載入xml模板
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 將圖形存儲的方式進行轉換
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用模板匹配圖形
faces = faceCascade.detectMultiScale(gray, 1.3, 5)
print(faces)
在人臉的區域周圍繪制方框
在上一個步驟中,faces中的四個量分別為左上角的橫坐標、縱坐標、寬度、長度。
所以我們根據這四個量很容易的就可以繪制出方框。
1
2
3
# 接上段程序
# 函數的參數分別為:圖像,左上角坐標,右下角坐標,顏色,寬度
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
成果
根據上面講述的內容,我們現在已經可以完成一個簡單的人臉辨認了:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#coding=utf8
import cv2
print('Press Esc to exit')
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
imgWindow = cv2.namedWindow('FaceDetect', cv2.WINDOW_NORMAL)
def detect_face():
capInput = cv2.VideoCapture(0)
# 避免處理時間過長造成畫面卡頓
nextCaptureTime = time.time()
faces = []
if not capInput.isOpened(): print('Capture failed because of camera')
while 1:
ret, img = capInput.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if nextCaptureTime < time.time():
nextCaptureTime = time.time() + 0.1
faces = faceCascade.detectMultiScale(gray, 1.3, 5)
if faces:
for x, y, w, h in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow('FaceDetect', img)
# 這是簡單的讀取鍵盤輸入,27即Esc的acsii碼
if cv2.waitKey(1) & 0xFF == 27: break
capInput.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
detect_face()
使用Face++完成人臉辨識
第一次認識Face++還是因為支付寶的人臉支付,響應速度還是非常讓人滿意的。
現在只需要免費注冊一個賬號然後新建一個應用就可以使用了,非常方便。
他的官方網址是這個,注冊好之後在這里的我的應用中創建應用即可。
創建好應用之後你會獲得API Key與API Secret。
Face++的API調用邏輯簡單來說是這樣的:
上傳圖片獲取讀取到的人的face_id
創建Person,獲取person_id(Person中的圖片可以增加、刪除)
比較兩個face_id,判斷是否是一個人
比較face_id與person_id,判斷是否是一個人
上傳圖片獲取face_id
在將圖片通過post方法上傳到特定的地址後將返回一個json的值。
如果api_key, api_secret沒有問題,且在上傳的圖片中有識別到人臉,那麼會存儲在json的face鍵值下。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#coding=utf8
import requests
# 這里填寫你的應用的API Key與API Secret
API_KEY = ''
API_SECRET = ''
# 目前的API網址是這個,你可以在API文檔里找到這些
BASE_URL = 'httlus.com/v2'
# 使用Requests上傳圖片
url = '%s/detection/detect?api_key=%s&api_secret=%s&attribute=none'%(
BASE_URL, API_KEY, API_SECRET)
files = {'img': (os.path.basename(fileDir), open(fileDir, 'rb'),
mimetypes.guess_type(fileDir)[0]), }
r = requests.post(url, files = files)
# 如果讀取到圖片中的頭像則輸出他們,其中的'face_id'就是我們所需要的值
faces = r.json().get('face')
print faces
創建Person
這個操作沒有什麼可以講的內容,可以對照這段程序和官方的API介紹。
官方的API介紹可以見這里,相信看完這一段程序以後你就可以自己完成其餘的API了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 上接上一段程序
# 讀取face_id
if not faces is None: faceIdList = [face['face_id'] for face in faces]
# 使用Requests創建Person
url = '%s/person/create'%BASE_URL
params = {
'api_key': API_KEY,
'api_secret': API_SECRET,
'person_name': 'LittleCoder',
'face_id': ','.join(faceIdList), }
r = requests.get(url, params = params)
# 獲取person_id
print r.json.()['person_id']
進度確認
到目前為止,你應該已經可以就給定的兩張圖片比對是否是同一個人了。
那麼讓我們來試著寫一下這個程序吧,兩張圖片分別為』pic1.jpg』, 『pic2.jpg』好了。
下面我給出了我的代碼:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def upload_img(fileDir, oneface = True):
url = '%s/detection/detect?api_key=%s&api_secret=%s&attribute=none'%(
BASE_URL, API_KEY, API_SECRET)
if oneface: url += '&mode=oneface'
files = {'img': (os.path.basename(fileDir), open(fileDir, 'rb'),
mimetypes.guess_type(fileDir)[0]), }
r = requests.post(url, files = files)
faces = r.json().get('face')
if faces is None:
print('There is no face found in %s'%fileDir)
else:
return faces[0]['face_id']
def compare(faceId1, faceId2):
url = '%s/recognition/compare'%BASE_URL
params = BASE_PARAMS
params['face_id1'] = faceId1
params['face_id2'] = faceId2
r = requests.get(url, params)
return r.json()
faceId1 = upload_img('pic1.jpg')
faceId2 = upload_img('pic2.jpg')
if face_id1 and face_id2:
print(compare(faceId1, faceId2))
else:
print('Please change two pictures')
成品
到此,所有的知識介紹都結束了,相比大致如何完成這個項目各位讀者也已經有想法了吧。
下面我們需要構思一下人臉解鎖的思路,大致而言是這樣的:
使用一個程序設置賬戶(包括向賬戶中存儲解鎖用的圖片)
使用另一個程序登陸(根據輸入的用戶名測試解鎖)
這里會有很多重復的代碼,就不再贅述了,你可以在這里或者這里(提取碼:c073)下載源代碼測試使用。
這里是設置賬戶的截圖:
登陸
結束語
希望讀完這篇文章能對你有幫助,有什麼不足之處萬望指正(鞠躬)。
④ 如何利用python進行精準人臉識別
要調用api介面,建議用face++的,支付寶的人臉識別都是用的這個。可能需要一點費用,不貴,代碼里把fece++的api介面放進代碼就行,還可以可以檢測情緒,年齡等等的。
當然也有其他公司人臉識別的api介面,自己發現吧,其實很多,但基本都不會免費,有的可以試用
⑤ python能做圖像識別嗎
可以,你可以用它做其餘軟體能實現的任何功能。大家長用他來處理數據,做深度學習。
⑥ 如何python pil開發圖像識別
1. 簡介。
圖像處理是一門應用非常廣的技術,而擁有非常豐富第三方擴展庫的 Python 當然不會錯過這一門盛宴。PIL (Python Imaging Library)是 Python 中最常用的圖像處理庫,目前版本為 1.1.7,我們可以在這里下載學習和查找資料。
Image 類是 PIL 庫中一個非常重要的類,通過這個類來創建實例可以有直接載入圖像文件,讀取處理過的圖像和通過抓取的方法得到的圖像這三種方法。
2. 使用。
導入 Image 模塊。然後通過 Image 類中的 open 方法即可載入一個圖像文件。如果載入文件失敗,則會引起一個 IOError ;若無返回錯誤,則 open 函數返回一個 Image 對象。現在,我們可以通過一些對象屬性來檢查文件內容,即:
1 >>> import Image
2 >>> im = Image.open("j.jpg")
3 >>> print im.format, im.size, im.mode
4 JPEG (440, 330) RGB
這里有三個屬性,我們逐一了解。
format : 識別圖像的源格式,如果該文件不是從文件中讀取的,則被置為 None 值。
size : 返回的一個元組,有兩個元素,其值為象素意義上的寬和高。
mode : RGB(true color image),此外還有,L(luminance),CMTK(pre-press image)。
現在,我們可以使用一些在 Image 類中定義的方法來操作已讀取的圖像實例。比如,顯示最新載入的圖像:
1 >>>im.show()
2 >>>
輸出原圖:
3.5 更多關於圖像文件的讀取。
最基本的方式:im = Image.open("filename")
類文件讀取:fp = open("filename", "rb"); im = Image.open(fp)
字元串數據讀取:import StringIO; im = Image.open(StringIO.StringIO(buffer))
從歸檔文件讀取:import TarIO; fp = TarIo.TarIO("Image.tar", "Image/test/lena.ppm"); im = Image.open(fp)
基本的 PIL 目前就練習到這里。其他函數的功能可點擊這里進一步閱讀。
⑦ Python深度學習之圖像識別
作者 | 周偉能
來源 | 小叮當講SAS和Python
Python在機器學習(人工智慧,AI)方面有著很大的優勢。談到人工智慧,一般也會談到其實現的語言Python。前面有幾講也是關於機器學習在圖像識別中的應用。今天再來講一個關於運用google的深度學習框架tensorflow和keras進行訓練深度神經網路,並對未知圖像進行預測。
導入python模塊
導入圖像數據
合並列表數據
將圖片數據轉化為數組
顯示一張圖片
訓練神經網路
我們可以看到測試集的准確率達到99.67%
預測一個圖像
預測為汽車的概率為100%。(括弧內為真實標簽)
預測為美女的概率為100%。(括弧內為真實標簽)
測試集中前15個圖像預測完全正確。Nice!
最後我們來識別單張圖片。
結果預測為汽車。Nice!
最後來預測一下外部隨便下載的汽車或美女圖片
預測為汽車,不錯!
小編這里有10張圖片,前5張為汽車圖片,後五張為美女圖片。
下面進行批量預測:
結果也是完全正確。
看到這里,感覺神經網路是不是很神奇,要想讓神經網路預測得准確,我們就必須給予大量的數據進行訓練模型,優化模型,以至於達到准確識別圖像的目的,圖像識別作為人工智慧的一部分,現在已經慢慢走向成熟,雖然機器也有出錯的時候,但是進過不斷優化,錯誤率將會越來越小,相信機器智能或者人工智慧時代能夠創造出更多智能而美好的東西。為社會,為人類的自由做出更大的貢獻。
⑧ 如何用Python實現簡單人臉識別
你可以使用opencv庫提供的人臉識別模塊,這樣子會比較快
⑨ 這種圖片可以用Python自動識別嗎
Python圖片文本識別使用的工具是PIL和pytesser。因為他們使用到很多的python庫文件,為了避免一個個工具的安裝,建議使用pythonxy
pytesser是OCR開源項目的一個模塊,在Python中導入這個模塊即可將圖片中的文字轉換成文本。pytesser調用了tesseract。當在Python中調用pytesser模塊時,pytesser又用tesseract識別圖片中的文字。pytesser的使用步驟如下:
首先,安裝Python2.7版本,這個版本比較穩定,建議使用這個版本。
其次,安裝pythoncv。
然後,安裝PIL工具,pytesser的使用需要PIL庫的支持。
接著下載pytesser
最後,將pytesser解壓,這個是免安裝的,可以將解壓後的文件cut到Python安裝目錄的Lib\site-packages下直接使用,比如我的安裝目錄是:C:\Python27\Lib\site-packages,同時把這個目錄添加到環境變數之中。
完成以上步驟之後,就可以編寫圖片文本識別的Python腳本了。參考腳本如下:
from pytesser import *
import ImageEnhance
image = Image.open('D:\\workspace\\python\\5.png')
#使用ImageEnhance可以增強圖片的識別率
enhancer = ImageEnhance.Contrast(image)
image_enhancer = enhancer.enhance(4)
print image_to_string(image_enhancer)
tesseract是谷歌的一個對圖片進行識別的開源框架,免費使用,現在已經支持中文,而且識別率非常高,這里簡要來個helloworld級別的認識
下載之後進行安裝,不再演示。
在tesseract目錄下,有個tesseract.exe文件,主要調用這個執行文件,用cmd運行到這個目錄下,在這個目錄下同時放置一張需要識別的圖片,這里是123.jpg
然後運行:tesseract 123.jpg result
會把123.jpg自動識別並轉換為txt文件到result.txt
但是此時中文識別不好
然後找到tessdata目錄,把eng.traineddata替換為chi_sim.traineddata,並且把chi_sim.traineddata重命名為eng.traineddata
ok,現在中文識別基本達到90%以上了
⑩ 利用python做機器學習圖像識別要怎麼做
你需要的不只是分類演算法,還要有 Object Detection,如果想採用深度學習方法的話,建議論文直接從 R-CNN 一直看到 Mask R-CNN,之後如果需要速度就看看 YOLO 和 SSD。
當然如果你看不懂上述論文的話,說明你還是要從頭開始學習。