『壹』 python取得mysql資料庫的表。
MySQL 的 Binlog 記錄著 MySQL 資料庫的所有變更信息,了解 Binlog 的結構可以幫助我們解析Binlog,甚至對 Binlog 進行一些修改,或者說是「篡改」,例如實現類似於 Oracle 的 flashback 的功能,恢復誤刪除的記錄,把 update 的記錄再還原回去等。本文將帶您探討一下這些神奇功能的實現,您會發現比您想像地要簡單得多。本文指的 Binlog 是 ROW 模式的 Binlog,這也是 MySQL 8 里的默認模式,STATEMENT 模式因為使用中有很多限制,現在用得越來越少了。
Binlog 由事件(event)組成,請注意是事件(event)不是事務(transaction),一個事務可以包含多個事件。事件描述對資料庫的修改內容。
現在我們已經了解了 Binlog 的結構,我們可以試著修改 Binlog 里的數據。例如前面舉例的 Binlog 刪除了一條記錄,我們可以試著把這條記錄恢復,Binlog 裡面有個刪除行(DELETE_ROWS_EVENT)的事件,就是這個事件刪除了記錄,這個事件和寫行(WRITE_ROWS_EVENT)的事件的數據結構是完全一樣的,只是刪除行事件的類型是 32,寫行事件的類型是 30,我們把對應的 Binlog 位置的 32 改成 30 即可把已經刪除的記錄再插入回去。從前面的 「show binlog events」 裡面可看到這個 DELETE_ROWS_EVENT 是從位置 378 開始的,這里的位置就是 Binlog 文件的實際位置(以位元組為單位)。從事件(event)的結構裡面可以看到 type_code 是在 event 的第 5 個位元組,我們寫個 Python 小程序把把第383(378+5=383)位元組改成 30 即可。當然您也可以用二進制編輯工具來改。
找出 Binlog 中的大事務
由於 ROW 模式的 Binlog 是每一個變更都記錄一條日誌,因此一個簡單的 SQL,在 Binlog 里可能會產生一個巨無霸的事務,例如一個不帶 where 的 update 或 delete 語句,修改了全表裡面的所有記錄,每條記錄都在 Binlog 裡面記錄一次,結果是一個巨大的事務記錄。這樣的大事務經常是產生麻煩的根源。我的一個客戶有一次向我抱怨,一個 Binlog 前滾,滾了兩天也沒有動靜,我把那個 Binlog 解析了一下,發現裡面有個事務產生了 1.4G 的記錄,修改了 66 萬條記錄!下面是一個簡單的找出 Binlog 中大事務的 Python 小程序,我們知道用 mysqlbinlog 解析的 Binlog,每個事務都是以 BEGIN 開頭,以 COMMIT 結束。我們找出 BENGIN 前面的 「# at」 的位置,檢查 COMMIT 後面的 「# at」 位置,這兩個位置相減即可計算出這個事務的大小,下面是這個 Python 程序的例子。
切割 Binlog 中的大事務
對於大的事務,MySQL 會把它分解成多個事件(注意一個是事務 TRANSACTION,另一個是事件 EVENT),事件的大小由參數 binlog-row-event-max-size 決定,這個參數默認是 8K。因此我們可以把若干個事件切割成一個單獨的略小的事務
ROW 模式下,即使我們只更新了一條記錄的其中某個欄位,也會記錄每個欄位變更前後的值,這個行為是 binlog_row_image 參數控制的,這個參數有 3 個值,默認為 FULL,也就是記錄列的所有修改,即使欄位沒有發生變更也會記錄。這樣我們就可以實現類似 Oracle 的 flashback 的功能,我個人估計 MySQL 未來的版本從可能會基於 Binlog 推出這樣的功能。
了解了 Binlog 的結構,再加上 Python 這把瑞士軍刀,我們還可以實現很多功能,例如我們可以統計哪個表被修改地最多?我們還可以把 Binlog 切割成一段一段的,然後再重組,可以靈活地進行 MySQL 資料庫的修改和遷移等工作。
『貳』 如何在python讀資料庫數據並已圖表形式呈現
首先你要知道如何在視圖里渲染模板,另外得要看你用的是什麼資料庫,以及你是否使用django的orm。
拿mysql為例,如果你只需要從現有資料庫中查詢數據並顯示,那麼使用MySQLdb模塊即可,查詢出來的數據和模板進行渲染,之後返回渲染後的模板對象即可。
『叄』 怎麼樣通過python向SQL server資料庫中插入excel表格,
18
19
20
21
# 需安裝 xlrd-0.9.2 和 xlutils-1.7.1 這兩個模塊
from xlwt import Workbook, Formula
import xlrd
book = Workbook()
sheet1 = book.add_sheet('Sheet 1')
sheet1.write(0,0,10)
sheet1.write(0,1,20)
sheet1.write(1,0,Formula('A1/B1'))
sheet2 = book.add_sheet('Sheet 2')
row = sheet2.row(0)
row.write(0,Formula('sum(1,2,3)'))
row.write(1,Formula('SuM(1;2;3)'))
row.write(2,Formula("$A$1+$B$1*SUM('ShEEt 1'!$A$1:$b$2)"))
book.save('formula.xls')
book = xlrd.open_workbook('formula.xls')
sheet = book.sheets()[0]
nrows=sheet.nrows
ncols=sheet.ncols
for i in range(nrows):
for j in range(ncols):
print (sheet.cell(i,j).value)
『肆』 如何用python將dataframe更新原來的sql表
pandas是python環境下最有名的數據統計包,而DataFrame翻譯為數據框,是一種數據組織方式,這么說你可能無法從感性上認識它,舉個例子,你大概用過Excel,而它也是一種數據組織和呈現的方式,簡單說就是表格,而在在pandas中用DataFrame組織數據,如果你不print DataFrame,你看不到這些數據,下面我們來看看DataFrame是如何使用的。
首先是引入pandas和numpy,這是經常配合使用的兩個包,pandas依賴於numpy,引入以後我們可以直接使用np/pd來表示這個兩個模塊
先創建一個時間索引,所謂的索引(index)就是每一行數據的id,可以標識每一行的唯一值
為了快速入門,我們看一下如何創建一個6X4的數據:randn函數用於創建隨機數,參數表示行數和列數,dates是上一步創建的索引列
我們還可以使用字典來創建數據框,例如創建一個列名為A的數據框,索引是自動創建的整數
這又是一個字典創建DataFrame的例子
假如字典內的數據長度不同,以最長的數據為准,比如B列有4行:
可以使用dtypes來查看各行的數據格式
接著看一下如何查看數據框中的數據,看一下所有的數據
使用head查看前幾行數據(默認是前5行),不過你可以指定前幾行
查看前三行數據
使用tail查看後5行數據
查看數據框的索引
查看列名用columns
查看數據值,用values
查看描述性統計,用describe
使用type看一下輸出的描述性統計是什麼樣的數據類型——DataFrame數據
使用T來轉置數據,也就是行列轉換
對數據進行排序,用到了sort,參數可以指定根據哪一列數據進行排序。
好了,這篇入門教程到這里,後面還有很多,希望有志同道合的朋友一起交流學習,有什麼說的不對的地方,請批評指正。
『伍』 如何用 Python 執行常見的 Excel 和 SQL 任務
你可以導入.sql 資料庫並用 SQL 查詢中處理它們。在Excel中,你可以雙擊一個文件,然後在電子表格模式下開始處理它。在 Python 中,有更多復雜的特性,得益於能夠處理許多不同類型的文件格式和數據源的。
使用一個數據處理庫 Pandas,你可以使用 read 方法導入各種文件格式。,使用這個方法所能導入完整的文件格式清單是在 Pandas 文檔中。你可以導入從 CSV 和 Excel 文件到 HTML 文件中的所有內容!
『陸』 Python sql 選擇包含在另一張表的數據列
使用高級篩選。
自從20世紀90年代初Python語言誕生至2022年,它已被逐漸廣泛應用於系統管理任務的處理和Web編程。
由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。
『柒』 python與SQL應該怎麼選擇
Python和SQL並不沖突,很多時候需要先用SQL選取想要的數據然後再用Python做處理和分析。
SQL學起來更快而且也更符合題主想做金融數據分析的要求,不過SQL入門其實很簡單,之後在工作中精通就好,SQL了解了之後就可以接著學Python或者其他符合題主要求的工具了。
Python(計算機編程語言):
Python由荷蘭數學和計算機科學研究學會的Guido van Rossum於1990 年代初設計,作為一門叫做ABC語言的替代品。
Python提供了高效的高級數據結構,還能簡單有效地面向對象編程。Python語法和動態類型,以及解釋型語言的本質,使它成為多數平台上寫腳本和快速開發應用的編程語言,隨著版本的不斷更新和語言新功能的添加,逐漸被用於獨立的、大型項目的開發。
ython解釋器易於擴展,可以使用C或C++(或者其他可以通過C調用的語言)擴展新的功能和數據類型。 Python 也可用於可定製化軟體中的擴展程序語言。Python豐富的標准庫,提供了適用於各個主要系統平台的源碼或機器碼。
2021年10月,語言流行指數的編譯器Tiobe將Python加冕為最受歡迎的編程語言,20年來首次將其置於Java、C和JavaScript之上。
『捌』 如何使用python 統計網站訪問量並生成報表
統計網站訪問量
統計出每個IP的訪問量有多少?(從日誌文件中查找)
#!/usr/bin/env python
#!coding=utf-8
list = []
f = file('/tmp/1.log')
str1 = f.readlines()
f.close()
for i in str1:
ip = i.split()[0] //split()通過指定分隔符對字元串進行切片,默認為所有的空字元;split分隔後是一個列表,[0]表示取其第一個元素;
list.append(ip)//追加
list_num = set(list)
for j in list_num:
num = list.count(j)
print '%s : %s' %(j,num)
生成報表
#_*_coding:utf-8_*_
import MySQLdb
import xlwt
from datetime import datetime
def get_data(sql):
# 創建資料庫連接.
conn = MySQLdb.connect(host='127.0.0.1',user='root'\
,passwd='123456',db='test',port=3306,charset='utf8')
# 創建游標
cur = conn.cursor()
# 執行查詢,
cur.execute(sql)
# 由於查詢語句僅會返回受影響的記錄條數並不會返回資料庫中實際的值,所以此處需要fetchall()來獲取所有內容。
result = cur.fetchall()
#關閉游標
cur.close()
#關閉資料庫連接
conn.close
# 返給結果給函數調用者。
return result
def write_data_to_excel(name,sql):
# 將sql作為參數傳遞調用get_data並將結果賦值給result,(result為一個嵌套元組)
result = get_data(sql)
# 實例化一個Workbook()對象(即excel文件)
wbk = xlwt.Workbook()
# 新建一個名為Sheet1的excel sheet。此處的cell_overwrite_ok =True是為了能對同一個單元格重復操作。
sheet = wbk.add_sheet('Sheet1',cell_overwrite_ok=True)
# 獲取當前日期,得到一個datetime對象如:(2016, 8, 9, 23, 12, 23, 424000)
today = datetime.today()
# 將獲取到的datetime對象僅取日期如:2016-8-9
today_date = datetime.date(today)
# 遍歷result中的沒個元素。
for i in xrange(len(result)):
#對result的每個子元素作遍歷,
for j in xrange(len(result[i])):
#將每一行的每個元素按行號i,列號j,寫入到excel中。
sheet.write(i,j,result[i][j])
# 以傳遞的name+當前日期作為excel名稱保存。
wbk.save(name+str(today_date)+'.xls')
# 如果該文件不是被import,則執行下面代碼。
if __name__ == '__main__':
#定義一個字典,key為對應的數據類型也用作excel命名,value為查詢語句
db_dict = {'test':'select * from student'}
# 遍歷字典每個元素的key和value。
for k,v in db_dict.items():
# 用字典的每個key和value調用write_data_to_excel函數。
write_data_to_excel(k,v)
『玖』 python對資料庫表格裡面的內容增刪查改怎麼寫
本文主要給大家介紹了關於python模擬sql語句對員工表格進行增刪改查的相關內容,分享出來供大家參考學習,下面來一起看看詳細的介紹:
具體需求:
員工信息表程序,實現增刪改查操作:
可進行模糊查詢,語法支持下面3種:
select name,age from staff_data where age > 22 多個查詢參數name,age 用','分割
select * from staff_data where dept = 人事
select * from staff_data where enroll_date like 2013
查到的信息,列印後,最後面還要顯示查到的條數
可創建新員工紀錄,以phone做唯一鍵,phone存在即提示,staff_id需自增,添加多個記錄record1/record2中間用'/'分割
insert into staff_data values record1/record2
可刪除指定員工信息紀錄,輸入員工id,即可刪除
delete from staff_data where staff_id>=5andstaff_id<=10
可修改員工信息,語法如下:
update staff_table set dept=Market,phone=13566677787 where dept = 運維 多個set值用','分割
使用re模塊,os模塊,充分使用函數精簡代碼,熟練使用 str.split()來解析格式化字元串
由於,sql命令中的幾個關鍵字元串有一定規律,只出現一次,並且有順序!!!
按照key_lis = ['select', 'insert', 'delete', 'update', 'from', 'into', 'set', 'values', 'where', 'limit']的元素順序分割sql.
分割元素作為sql_dic字典的key放進字典中.分割後的列表為b,如果len(b)>1,說明sql字元串中含有分割元素,同時b[0]對應上一個分割元素的值,b[-1]為下一次分割對象!
這樣不斷迭代直到把sql按出現的所有分割元素分割完畢,但注意這里每次循環都是先分割後賦值!!!當前分割元素比如'select'對應的值,需要等到下一個分割元素
比如'from'執行分割後的列表b,其中b[0]的值才會賦值給sql_dic['select'] ,所以最後一個分割元素的值,不能通過上述循環來完成,必須先處理可能是最後一個分割元素,再正常循環!!
在這sql語句中,有可能成為最後一個分割元素的 'limit' ,'values', 'where', 按優先順序別,先處理'limit' ,再處理'values'或 'where'.....
處理完得到sql_dic後,就是你按不同命令執行,對數據文件的增刪改查,最後返回處理結果!!
示例代碼# _*_coding:utf-8_*_# Author:Jaye Heimport reimport os def sql_parse(sql, key_lis): ''' 解析sql命令字元串,按照key_lis列表裡的元素分割sql得到字典形式的命令sql_dic :param sql: :param key_lis: :return: ''' sql_list = [] sql_dic = {} for i in key_lis: b = [j.strip() for j in sql.split(i)] if len(b) > 1: if len(sql.split('limit')) > 1: sql_dic['limit'] = sql.split('limit')[-1] if i == 'where' or i == 'values': sql_dic[i] = b[-1] if sql_list: sql_dic[sql_list[-1]] = b[0] sql_list.append(i) sql = b[-1] else: sql = b[0] if sql_dic.get('select'): if not sql_dic.get('from') and not sql_dic.get('where'): sql_dic['from'] = b[-1] if sql_dic.get('select'): sql_dic['select'] = sql_dic.get('select').split(',') if sql_dic.get('where'): sql_dic['where'] = where_parse(sql_dic.get('where')) return sql_dic def where_parse(where): ''' 格式化where字元串為列表where_list,用'and', 'or', 'not'分割字元串 :param where: :return: ''' casual_l = [where] logic_key = ['and', 'or', 'not'] for j in logic_key: for i in casual_l: if i not in logic_key: if len(i.split(j)) > 1: ele = i.split(j) index = casual_l.index(i) casual_l.pop(index) casual_l.insert(index, ele[0]) casual_l.insert(index+1, j) casual_l.insert(index+2, ele[1]) casual_l = [k for k in casual_l if k] where_list = three_parse(casual_l, logic_key) return where_list def three_parse(casual_l, logic_key): ''' 處理臨時列表casual_l中具體的條件,'staff_id>5'-->['staff_id','>','5'] :param casual_l: :param logic_key: :return: ''' where_list = [] for i in casual_l: if i not in logic_key: b = i.split('like') if len(b) > 1: b.insert(1, 'like') where_list.append(b) else: key = ['<', '=', '>'] new_lis = [] opt = '' lis = [j for j in re.split('([=<>])', i) if j] for k in lis: if k in key: opt += k else: new_lis.append(k) new_lis.insert(1, opt) where_list.append(new_lis) else: where_list.append(i) return where_list def sql_action(sql_dic, title): ''' 把解析好的sql_dic分發給相應函數執行處理 :param sql_dic: :param title: :return: ''' key = {'select': select, 'insert': insert, 'delete': delete, 'update': update} res = [] for i in sql_dic: if i in key: res = key[i](sql_dic, title) return res def select(sql_dic, title): ''' 處理select語句命令 :param sql_dic: :param title: :return: ''' with open('staff_data', 'r', encoding='utf-8') as fh: filter_res = where_action(fh, sql_dic.get('where'), title) limit_res = limit_action(filter_res, sql_dic.get('limit')) search_res = search_action(limit_res, sql_dic.get('select'), title) return search_res def insert(sql_dic, title): ''' 處理insert語句命令 :param sql_dic: :param title: :return: ''' with open('staff_data', 'r+', encoding='utf-8') as f: data = f.readlines() phone_list = [i.strip().split(',')[4] for i in data] ins_count = 0 if not data: new_id = 1 else: last = data[-1] last_id = int(last.split(',')[0]) new_id = last_id+1 record = sql_dic.get('values').split('/') for i in record: if i.split(',')[3] in phone_list: print('\033[1;31m%s 手機號已存在\033[0m' % i) else: new_record = '%s,%s\n' % (str(new_id), i) f.write(new_record) new_id += 1 ins_count += 1 f.flush() return ['insert successful'], [str(ins_count)] def delete(sql_dic, title): ''' 處理delete語句命令 :param sql_dic: :param title: :return: ''' with open('staff_data', 'r', encoding='utf-8') as r_file,\ open('staff_data_bak', 'w', encoding='utf-8') as w_file: del_count = 0 for line in r_file: dic = dict(zip(title.split(','), line.split(','))) filter_res = logic_action(dic, sql_dic.get('where')) if not filter_res: w_file.write(line) else: del_count += 1 w_file.flush() os.remove('staff_data') os.rename('staff_data_bak', 'staff_data') return ['delete successful'], [str(del_count)] def update(sql_dic, title): ''' 處理update語句命令 :param sql_dic: :param title: :return: ''' set_l = sql_dic.get('set').strip().split(',') set_list = [i.split('=') for i in set_l] update_count = 0 with open('staff_data', 'r', encoding='utf-8') as r_file,\ open('staff_data_bak', 'w', encoding='utf-8') as w_file: for line in r_file: dic = dict(zip(title.split(','), line.strip().split(','))) filter_res = logic_action(dic, sql_dic.get('where')) if filter_res: for i in set_list: k = i[0] v = i[-1] dic[k] = v line = [dic[i] for i in title.split(',')] update_count += 1 line = ','.join(line)+'\n' w_file.write(line) w_file.flush() os.remove('staff_data') os.rename('staff_data_bak', 'staff_data') return ['update successful'], [str(update_count)] def where_action(fh, where_list, title): ''' 具體處理where_list里的所有條件 :param fh: :param where_list: :param title: :return: ''' res = [] if len(where_list) != 0: for line in fh: dic = dict(zip(title.split(','), line.strip().split(','))) if dic['name'] != 'name': logic_res = logic_action(dic, where_list) if logic_res: res.append(line.strip().split(',')) else: res = [i.split(',') for i in fh.readlines()] return res pass def logic_action(dic, where_list): ''' 判斷數據文件中每一條是否符合where_list條件 :param dic: :param where_list: :return: ''' logic = [] for exp in where_list: if type(exp) is list: exp_k, opt, exp_v = exp if exp[1] == '=': opt = '==' logical_char = "'%s'%s'%s'" % (dic[exp_k], opt, exp_v) if opt != 'like': exp = str(eval(logical_char)) else: if exp_v in dic[exp_k]: exp = 'True' else: exp = 'False' logic.append(exp) res = eval(' '.join(logic)) return res def limit_action(filter_res, limit_l): ''' 用列表切分處理顯示符合條件的數量 :param filter_res: :param limit_l: :return: ''' if limit_l: index = int(limit_l[0]) res = filter_res[:index] else: res = filter_res return res def search_action(limit_res, select_list, title): ''' 處理需要查詢並顯示的title和相應數據 :param limit_res: :param select_list: :param title: :return: ''' res = [] fields_list = title.split(',') if select_list[0] == '*': res = limit_res else: fields_list = select_list for data in limit_res: dic = dict(zip(title.split(','), data)) r_l = [] for i in fields_list: r_l.append((dic[i].strip())) res.append(r_l) return fields_list, res if __name__ == '__main__': with open('staff_data', 'r', encoding='utf-8') as f: title = f.readline().strip() key_lis = ['select', 'insert', 'delete', 'update', 'from', 'into', 'set', 'values', 'where', 'limit'] while True: sql = input('請輸入sql命令,退出請輸入exit:').strip() sql = re.sub(' ', '', sql) if len(sql) == 0:continue if sql == 'exit':break sql_dict = sql_parse(sql, key_lis) fields_list, fields_data = sql_action(sql_dict, title) print('\033[1;33m結果如下:\033[0m') print('-'.join(fields_list)) for data in fields_data: print('-'.join(data))
總結
以上就是這篇文章的全部內容了,希望本文的內容對大家的學習或者工作能帶來一定的幫助,如果有疑問大家可以留言交流,謝謝大家對腳本之家的支持。
『拾』 sql與python區別是什麼有什麼聯系
一、性質不同
1、sql:是一種特殊目的的編程語言,是一種資料庫查詢和程序設計語言。
2、python:Python由荷蘭數學和計算機科學研究學會的Guido van Rossum於1990 年代初設計,作為一門叫做ABC語言的替代品。
二、作用不同
1、sql:用於存取數據以及查詢、更新和管理關系資料庫系統。
2、python:Python提供了高效的高級數據結構,還能簡單有效地面向對象編程。
三、特點不同
1、sql:不要求用戶指定對數據的存放方法,也不需要用戶了解具體的數據存放方式,所以具有完全不同底層結構的不同資料庫系統, 可以使用相同的結構化查詢語言作為數據輸入與管理的介面。
2、python:Python語法和動態類型,以及解釋型語言的本質,使它成為多數平台上寫腳本和快速開發應用的編程語言,隨著版本的不斷更新和語言新功能的添加,逐漸被用於獨立的、大型項目的開發。