導航:首頁 > 操作系統 > linuxtcp協議棧分析

linuxtcp協議棧分析

發布時間:2022-11-27 03:55:18

linux程序包里的TCPIP協議棧哪裡找

網路層,傳輸層,套接字的代碼在/net目錄下,數據鏈路層和驅動程序在/driver/net目錄下。

Ⅱ TCP∕IP協議的結構

TCP/IP協議並不完全符合OSI的七層參考模型。傳統的開放式系統互連參考模型,是一種通信協議的7層抽象的參考模型,其中每一層執行某一特定任務。該模型的目的是使各種硬體在相同的層次上相互通信。這7層是:物理層、數據鏈路層、網路層、傳輸層、話路層、表示層和應用層。
而TCP/IP通訊協議採用了4層的層級結構,每一層都呼叫它的下一層所提供的網路來完成自己的需求。這4層分別為:
●應用層:應用程序間溝通的層,如簡單電子郵件傳輸(SMTP)、文件傳輸協議(FTP)、網路遠程訪問協議(Telnet)等。
●傳輸層:在此層中,它提供了節點間的數據傳送服務,如傳輸控制協議(TCP)、用戶數據報協議(UDP)等,TCP和UDP給數據包加入傳輸數據並把它傳輸到下一層中,這一層負責傳送數據,並且確定數據已被送達並接收。
●互連網路層:負責提供基本的數據封包傳送功能,讓每一塊數據包都能夠到達目的主機(但不檢查是否被正確接收),如網際協議(IP)。
●網路介面層:對實際的網路媒體的管理,定義如何使用實際網路(如Ethernet、Serial
Line等)來傳送數據。
1、TCP/IP協議棧
四層模型
TCP/IP這個協議遵守一個四層的模型概念:應用層、傳輸層、互聯層和網路介面層。
網路介面層
模型的基層是網路介面層。負責數據幀的發送和接收,幀是獨立的網路信息傳輸單元。網路介面層將幀放在網上,或從網上把幀取下來。
互聯層
互聯協議將數據包封裝成internet數據報,並運行必要的路由演算法
這里有四個互聯協議:
網際協議IP:負責在主機和網路之間定址和路由數據包。
地址解析協議ARP:獲得同一物理網路中的硬體主機地址。
網際控制消息協議ICMP:發送消息,並報告有關數據包的傳送錯誤。
互聯組管理協議IGMP:被IP主機拿來向本地多路廣播路由器報告主機組成員。
傳輸層
傳輸協議在計算機之間提供通信會話。傳輸協議的選擇根據數據傳輸方式而定。
兩個傳輸協議:
傳輸控制協議TCP:為應用程序提供可靠的通信連接。適合於一次傳輸大批數據的情況。並適用於要求得到響應的應用程序。
用戶數據報協議UDP:提供了無連接通信,且不對傳送包進行可靠的保證。適合於一次傳輸小量數據,可靠性則由應用層來負責。
應用層
應用程序通過這一層訪問網路。
網路介面技術
IP使用網路設備介面規范NDIS向網路介面層提交幀。IP支持廣域網和本地網介面技術。
串列線路協議
TCP/IPG一般通過internet串列線路協議SLIP或點對點協議PPP在串列線上進行數據傳送。(是不是我們平時把它稱之為非同步通信,對於要拿LINUX提供建立遠程連接的朋友應該多研究一下這方面的知識)?

Ⅲ Linux怎麼使用ss命令查看系統的socket狀態

ss是Socket Statistics的縮寫。顧名思義,ss命令可以用來獲取socket統計信息,它可以顯示和netstat類似的內容。但ss的優勢在於它能夠顯示更多更詳細的有關TCP和連接狀態的信息,而且比netstat更快速更高效。當伺服器的socket連接數量變得非常大時,無論是使用netstat命令還是直接cat /proc/net/tcp,執行速度都會很慢。可能你不會有切身的感受,但請相信我,當伺服器維持的連接達到上萬個的時候,使用netstat等於浪費 生命,而用ss才是節省時間。天下武功唯快不破。ss快的秘訣在於,它利用到了TCP協議棧中tcp_diag。tcp_diag是一個用於分析統計的模塊,可以獲得Linux 內核中第一手的信息,這就確保了ss的快捷高效。當然,如果你的系統中沒有tcp_diag,ss也可以正常運行,只是效率會變得稍慢。(但仍然比 netstat要快。)

命令格式:
ss [參數]
ss [參數] [過濾]

2.命令功能:
ss(Socket Statistics的縮寫)命令可以用來獲取 socket統計信息,此命令輸出的結果類似於 netstat輸出的內容,但它能顯示更多更詳細的 TCP連接狀態的信息,且比 netstat 更快速高效。它使用了 TCP協議棧中 tcp_diag(是一個用於分析統計的模塊),能直接從獲得第一手內核信息,這就使得 ss命令快捷高效。在沒有 tcp_diag,ss也可以正常運行。

3.命令參數:
-h, --help 幫助信息
-V, --version 程序版本信息
-n, --numeric 不解析服務名稱
-r, --resolve 解析主機名
-a, --all 顯示所有套接字(sockets)
-l, --listening 顯示監聽狀態的套接字(sockets)
-o, --options 顯示計時器信息
-e, --extended 顯示詳細的套接字(sockets)信息
-m, --memory 顯示套接字(socket)的內存使用情況
-p, --processes 顯示使用套接字(socket)的進程
-i, --info 顯示 TCP內部信息
-s, --summary 顯示套接字(socket)使用概況
-4, --ipv4 僅顯示IPv4的套接字(sockets)
-6, --ipv6 僅顯示IPv6的套接字(sockets)
-0, --packet 顯示 PACKET 套接字(socket)
-t, --tcp 僅顯示 TCP套接字(sockets)
-u, --udp 僅顯示 UCP套接字(sockets)
-d, --dccp 僅顯示 DCCP套接字(sockets)
-w, --raw 僅顯示 RAW套接字(sockets)
-x, --unix 僅顯示 Unix套接字(sockets)
-f, --family=FAMILY 顯示 FAMILY類型的套接字(sockets),FAMILY可選,支持 unix, inet, inet6, link, netlink
-A, --query=QUERY, --socket=QUERY
QUERY := {all|inet|tcp|udp|raw|unix|packet|netlink}[,QUERY]
-D, --diag=FILE 將原始TCP套接字(sockets)信息轉儲到文件
-F, --filter=FILE 從文件中都去過濾器信息
FILTER := [ state TCP-STATE ] [ EXPRESSION ]
4.使用實例:
實例1:顯示TCP連接
命令:ss -t -a
輸出:
代碼如下:
[root@localhost ~]# ss -t -a
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 0 127.0.0.1:smux *:*
LISTEN 0 0 *:3690 *:*
LISTEN 0 0 *:ssh *:*
ESTAB 0 0 192.168.120.204:ssh 10.2.0.68:49368
[root@localhost ~]#
實例2:顯示 Sockets 摘要
命令:ss -s
輸出:
代碼如下:
[root@localhost ~]# ss -s
Total: 34 (kernel 48)
TCP: 4 (estab 1, closed 0, orphaned 0, synrecv 0, timewait 0/0), ports 3《/p》 《p》Transport Total IP IPv6
* 48 - -
RAW 0 0 0
UDP 5 5 0
TCP 4 4 0
INET 9 9 0
FRAG 0 0 0
[root@localhost ~]#
說明:列出當前的established, closed, orphaned and waiting TCP sockets
實例3:列出所有打開的網路連接埠
命令:ss -l
輸出:
代碼如下:
[root@localhost ~]# ss -l
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 127.0.0.1:smux *:*
0 0 *:3690 *:*
0 0 *:ssh *:*
[root@localhost ~]#
實例4:查看進程使用的socket
命令:ss -pl
輸出:
代碼如下:
[root@localhost ~]# ss -pl
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 127.0.0.1:smux *:* users:((「snmpd」,2716,8))
0 0 *:3690 *:* users:((「svnserve」,3590,3))
0 0 *:ssh *:* users:((「sshd」,2735,3))
[root@localhost ~]#
實例5:找出打開套接字/埠應用程序
命令:ss -lp | grep 3306
輸出:
代碼如下:
[root@localhost ~]# ss -lp|grep 1935
0 0 *:1935 *:* users:((「fmsedge」,2913,18))
0 0 127.0.0.1:19350 *:* users:((「fmsedge」,2913,17))
[root@localhost ~]# ss -lp|grep 3306
0 0 *:3306 *:* users:((「mysqld」,2871,10))
[root@localhost ~]#
實例6:顯示所有UDP Sockets
命令:ss -u -a
輸出:
代碼如下:
[root@localhost ~]# ss -u -a
State Recv-Q Send-Q Local Address:Port Peer Address:Port
UNCONN 0 0 127.0.0.1:syslog *:*
UNCONN 0 0 *:snmp *:*
ESTAB 0 0 192.168.120.203:39641 10.58.119.119:domain
[root@localhost ~]#
實例7:顯示所有狀態為established的SMTP連接
命令:ss -o state established 『( dport = :smtp or sport = :smtp )』
輸出:
代碼如下:
[root@localhost ~]# ss -o state established 『( dport = :smtp or sport = :smtp )』
Recv-Q Send-Q Local Address:Port Peer Address:Port
[root@localhost ~]#
實例8:顯示所有狀態為Established的HTTP連接
命令:ss -o state established 『( dport = :http or sport = :http )』
輸出:
代碼如下:
[root@localhost ~]# ss -o state established 『( dport = :http or sport = :http )』
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 75.126.153.214:2164 192.168.10.42:http
[root@localhost ~]#
實例9:列舉出處於 FIN-WAIT-1狀態的源埠為 80或者 443,目標網路為 193.233.7/24所有 tcp套接字
命令:ss -o state fin-wait-1 『( sport = :http or sport = :https )』 dst 193.233.7/24
實例10:用TCP 狀態過濾Sockets:
命令:
代碼如下:
ss -4 state FILTER-NAME-HERE
ss -6 state FILTER-NAME-HERE
輸出:
代碼如下:
[root@localhost ~]#ss -4 state closing
Recv-Q Send-Q Local Address:Port Peer Address:Port
1 11094 75.126.153.214:http 192.168.10.42:4669
說明:
FILTER-NAME-HERE 可以代表以下任何一個:
代碼如下:
established
syn-sent
syn-recv
fin-wait-1
fin-wait-2
time-wait
closed
close-wait
last-ack
listen
closing
all : 所有以上狀態
connected : 除了listen and closed的所有狀態
synchronized :所有已連接的狀態除了syn-sent
bucket : 顯示狀態為maintained as minisockets,如:time-wait和syn-recv.
big : 和bucket相反。
實例11:匹配遠程地址和埠號
命令:
代碼如下:
ss dst ADDRESS_PATTERN
ss dst 192.168.1.5
ss dst 192.168.119.113:http
ss dst 192.168.119.113:smtp
ss dst 192.168.119.113:443
輸出:
代碼如下:
[root@localhost ~]# ss dst 192.168.119.113
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:20229
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:61056
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:61623
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:60924
ESTAB 0 0 192.168.119.103:16050 192.168.119.113:43701
ESTAB 0 0 192.168.119.103:16073 192.168.119.113:32930
ESTAB 0 0 192.168.119.103:16073 192.168.119.113:49318
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:3844
[root@localhost ~]# ss dst 192.168.119.113:http
State Recv-Q Send-Q Local Address:Port Peer Address:Port
[root@localhost ~]# ss dst 192.168.119.113:3844
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:3844
[root@localhost ~]#
實例12:匹配本地地址和埠號
命令:
代碼如下:
ss src ADDRESS_PATTERN
ss src 192.168.119.103
ss src 192.168.119.103:http
ss src 192.168.119.103:80
ss src 192.168.119.103:smtp
ss src 192.168.119.103:25
輸出:
代碼如下:
[root@localhost ~]# ss src 192.168.119.103:16021
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:63054
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:62894
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:63055
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:2274
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:44784
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:7233
ESTAB 0 0 192.168.119.103:16021 192.168.119.103:58660
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:44822
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56737
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:57487
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56736
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:64652
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56586
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:64653
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56587
[root@localhost ~]#
實例13:將本地或者遠程埠和一個數比較
命令:
代碼如下:
ss dport OP PORT
ss sport OP PORT
輸出:
代碼如下:
[root@localhost ~]# ss sport = :http
[root@localhost ~]# ss dport = :http
[root@localhost ~]# ss dport \》 :1024
[root@localhost ~]# ss sport \》 :1024
[root@localhost ~]# ss sport \《 :32000
[root@localhost ~]# ss sport eq :22
[root@localhost ~]# ss dport != :22
[root@localhost ~]# ss state connected sport = :http
[root@localhost ~]# ss \( sport = :http or sport = :https \)
[root@localhost ~]# ss -o state fin-wait-1 \( sport = :http or sport = :https \) dst 192.168.1/24
說明:
ss dport OP PORT 遠程埠和一個數比較;ss sport OP PORT 本地埠和一個數比較。
OP 可以代表以下任意一個:
《= or le : 小於或等於埠號
》= or ge : 大於或等於埠號
== or eq : 等於埠號
!= or ne : 不等於埠號
《 or gt : 小於埠號
》 or lt : 大於埠號
實例14:ss 和 netstat 效率對比
命令:
代碼如下:
time netstat -at
time ss
輸出:
代碼如下:
[root@localhost ~]# time ss
real 0m0.739s
user 0m0.019s
sys 0m0.013s
[root@localhost ~]#
[root@localhost ~]# time netstat -at
real 2m45.907s
user 0m0.063s
sys 0m0.067s
[root@localhost ~]#
說明:
用time 命令分別獲取通過netstat和ss命令獲取程序和概要佔用資源所使用的時間。在伺服器連接數比較多的時候,netstat的效率完全沒法和ss比。

Ⅳ 怎麼驗證我的Linux TCP/IP協議棧能不能工作

與Win下一樣,在命令狀態下使用PING命令驗證。如PING 127.1.1.1驗證網卡安裝正確。另外,還可以PING網關、外網等驗證網路是否通。

Ⅳ 要理解Linux的TCP/IP stack需要什麼基礎知識

一、Linux系統基礎及系統管理1、操作系統發展史,系統架構平台概覽; Linux起源、理念、發展歷史及各發行版;
2、Linux基礎知識、基本命令、獲得使用幫助及文件系統組織結構等;
3、Linux用戶、組及許可權的基礎及相關高級話題,詳細講解useradd/userdel/chmod/chown/usermod/chage/umask等相關命令;
4、Bash基礎及配置、標准I/O、管道及shell編程基礎;
5、文本處理工具的概念、簡單文本編輯器nano的使用、vim編輯器入門、進階及常用技巧;
7、Linux系統進程管理基本原理及相關管理工具如ps、pkill、top、htop等的使用;Linux中的作業控制;

Ⅵ Linux TCP/IP協議棧封裝方式及核心數據結構代碼實現分析~

這個不是一兩句講清楚的,推薦做法:
1.《Linux源碼分析》或《Linux源碼情景分析》裡面有詳細描述,這兩本書網上很多下載的
2.如果想弄明白原理的話推薦看TCP/IP詳解

Ⅶ Linux TCP/IP協議棧數據包處理流程及代碼實現分析

好吧,我來回答吧,首先是網卡驅動程序捕獲到數據包,做檢驗無誤後,和DMA以及CPU交互,然後由DMA和驅動程序創建BD表,然後分配skbuf(LINUX下)數據結構保存獲得的數據幀,內核通過協議棧處理這個skbuf,通常是層層剝離每個層的首部,然後傳到上一層,細節就是一個變數做偏移量,每次做一個首部偏移讀取首部數據,識別本層協議類型以及下一層協議類型,具體過程就是這個網路原理的過程,請參考《TCP/IP詳解卷一》《linux設備驅動程序》《understanding linux network internals》《Unix網路編程卷一》等。

Ⅷ 關於 Linux 網路,你必須知道這些

我們一起學習了文件系統和磁碟 I/O 的工作原理,以及相應的性能分析和優化方法。接下來,我們將進入下一個重要模塊—— Linux 的網路子系統。

由於網路處理的流程最復雜,跟我們前面講到的進程調度、中斷處理、內存管理以及 I/O 等都密不可分,所以,我把網路模塊作為最後一個資源模塊來講解。

同 CPU、內存以及 I/O 一樣,網路也是 Linux 系統最核心的功能。網路是一種把不同計算機或網路設備連接到一起的技術,它本質上是一種進程間通信方式,特別是跨系統的進程間通信,必須要通過網路才能進行。隨著高並發、分布式、雲計算、微服務等技術的普及,網路的性能也變得越來越重要。

說到網路,我想你肯定經常提起七層負載均衡、四層負載均衡,或者三層設備、二層設備等等。那麼,這里說的二層、三層、四層、七層又都是什麼意思呢?

實際上,這些層都來自國際標准化組織制定的開放式系統互聯通信參考模型(Open System Interconnection Reference Model),簡稱為 OSI 網路模型。

但是 OSI 模型還是太復雜了,也沒能提供一個可實現的方法。所以,在 Linux 中,我們實際上使用的是另一個更實用的四層模型,即 TCP/IP 網路模型。

TCP/IP 模型,把網路互聯的框架分為應用層、傳輸層、網路層、網路介面層等四層,其中,

為了幫你更形象理解 TCP/IP 與 OSI 模型的關系,我畫了一張圖,如下所示:

當然了,雖說 Linux 實際按照 TCP/IP 模型,實現了網路協議棧,但在平時的學習交流中,我們習慣上還是用 OSI 七層模型來描述。比如,說到七層和四層負載均衡,對應的分別是 OSI 模型中的應用層和傳輸層(而它們對應到 TCP/IP 模型中,實際上是四層和三層)。

OSI引入了服務、介面、協議、分層的概念,TCP/IP借鑒了OSI的這些概念建立TCP/IP模型。

OSI先有模型,後有協議,先有標准,後進行實踐;而TCP/IP則相反,先有協議和應用再提出了模型,且是參照的OSI模型。

OSI是一種理論下的模型,而TCP/IP已被廣泛使用,成為網路互聯事實上的標准。

有了 TCP/IP 模型後,在進行網路傳輸時,數據包就會按照協議棧,對上一層發來的數據進行逐層處理;然後封裝上該層的協議頭,再發送給下一層。

當然,網路包在每一層的處理邏輯,都取決於各層採用的網路協議。比如在應用層,一個提供 REST API 的應用,可以使用 HTTP 協議,把它需要傳輸的 JSON 數據封裝到 HTTP 協議中,然後向下傳遞給 TCP 層。

而封裝做的事情就很簡單了,只是在原來的負載前後,增加固定格式的元數據,原始的負載數據並不會被修改。

比如,以通過 TCP 協議通信的網路包為例,通過下面這張圖,我們可以看到,應用程序數據在每個層的封裝格式。

這些新增的頭部和尾部,增加了網路包的大小,但我們都知道,物理鏈路中並不能傳輸任意大小的數據包。網路介面配置的最大傳輸單元(MTU),就規定了最大的 IP 包大小。在我們最常用的乙太網中,MTU 默認值是 1500(這也是 Linux 的默認值)。

一旦網路包超過 MTU 的大小,就會在網路層分片,以保證分片後的 IP 包不大於 MTU 值。顯然,MTU 越大,需要的分包也就越少,自然,網路吞吐能力就越好。

理解了 TCP/IP 網路模型和網路包的封裝原理後,你很容易能想到,Linux 內核中的網路棧,其實也類似於 TCP/IP 的四層結構。如下圖所示,就是 Linux 通用 IP 網路棧的示意圖:

我們從上到下來看這個網路棧,你可以發現,

這里我簡單說一下網卡。網卡是發送和接收網路包的基本設備。在系統啟動過程中,網卡通過內核中的網卡驅動程序注冊到系統中。而在網路收發過程中,內核通過中斷跟網卡進行交互。

再結合前面提到的 Linux 網路棧,可以看出,網路包的處理非常復雜。所以,網卡硬中斷只處理最核心的網卡數據讀取或發送,而協議棧中的大部分邏輯,都會放到軟中斷中處理。

我們先來看網路包的接收流程。

當一個網路幀到達網卡後,網卡會通過 DMA 方式,把這個網路包放到收包隊列中;然後通過硬中斷,告訴中斷處理程序已經收到了網路包。

接著,網卡中斷處理程序會為網路幀分配內核數據結構(sk_buff),並將其拷貝到 sk_buff 緩沖區中;然後再通過軟中斷,通知內核收到了新的網路幀。

接下來,內核協議棧從緩沖區中取出網路幀,並通過網路協議棧,從下到上逐層處理這個網路幀。比如,

最後,應用程序就可以使用 Socket 介面,讀取到新接收到的數據了。

為了更清晰表示這個流程,我畫了一張圖,這張圖的左半部分表示接收流程,而圖中的粉色箭頭則表示網路包的處理路徑。

了解網路包的接收流程後,就很容易理解網路包的發送流程。網路包的發送流程就是上圖的右半部分,很容易發現,網路包的發送方向,正好跟接收方向相反。

首先,應用程序調用 Socket API(比如 sendmsg)發送網路包。

由於這是一個系統調用,所以會陷入到內核態的套接字層中。套接字層會把數據包放到 Socket 發送緩沖區中。

接下來,網路協議棧從 Socket 發送緩沖區中,取出數據包;再按照 TCP/IP 棧,從上到下逐層處理。比如,傳輸層和網路層,分別為其增加 TCP 頭和 IP 頭,執行路由查找確認下一跳的 IP,並按照 MTU 大小進行分片。

分片後的網路包,再送到網路介面層,進行物理地址定址,以找到下一跳的 MAC 地址。然後添加幀頭和幀尾,放到發包隊列中。這一切完成後,會有軟中斷通知驅動程序:發包隊列中有新的網路幀需要發送。

最後,驅動程序通過 DMA ,從發包隊列中讀出網路幀,並通過物理網卡把它發送出去。

多台伺服器通過網卡、交換機、路由器等網路設備連接到一起,構成了相互連接的網路。由於網路設備的異構性和網路協議的復雜性,國際標准化組織定義了一個七層的 OSI 網路模型,但是這個模型過於復雜,實際工作中的事實標准,是更為實用的 TCP/IP 模型。

TCP/IP 模型,把網路互聯的框架,分為應用層、傳輸層、網路層、網路介面層等四層,這也是 Linux 網路棧最核心的構成部分。

我結合網路上查閱的資料和文章中的內容,總結了下網卡收發報文的過程,不知道是否正確:

當發送數據包時,與上述相反。鏈路層將數據包封裝完畢後,放入網卡的DMA緩沖區,並調用系統硬中斷,通知網卡從緩沖區讀取並發送數據。

了解 Linux 網路的基本原理和收發流程後,你肯定迫不及待想知道,如何去觀察網路的性能情況。具體而言,哪些指標可以用來衡量 Linux 的網路性能呢?

實際上,我們通常用帶寬、吞吐量、延時、PPS(Packet Per Second)等指標衡量網路的性能。

除了這些指標,網路的可用性(網路能否正常通信)、並發連接數(TCP 連接數量)、丟包率(丟包百分比)、重傳率(重新傳輸的網路包比例)等也是常用的性能指標。

分析網路問題的第一步,通常是查看網路介面的配置和狀態。你可以使用 ifconfig 或者 ip 命令,來查看網路的配置。我個人更推薦使用 ip 工具,因為它提供了更豐富的功能和更易用的介面。

以網路介面 eth0 為例,你可以運行下面的兩個命令,查看它的配置和狀態:

你可以看到,ifconfig 和 ip 命令輸出的指標基本相同,只是顯示格式略微不同。比如,它們都包括了網路介面的狀態標志、MTU 大小、IP、子網、MAC 地址以及網路包收發的統計信息。

第一,網路介面的狀態標志。ifconfig 輸出中的 RUNNING ,或 ip 輸出中的 LOWER_UP ,都表示物理網路是連通的,即網卡已經連接到了交換機或者路由器中。如果你看不到它們,通常表示網線被拔掉了。

第二,MTU 的大小。MTU 默認大小是 1500,根據網路架構的不同(比如是否使用了 VXLAN 等疊加網路),你可能需要調大或者調小 MTU 的數值。

第三,網路介面的 IP 地址、子網以及 MAC 地址。這些都是保障網路功能正常工作所必需的,你需要確保配置正確。

第四,網路收發的位元組數、包數、錯誤數以及丟包情況,特別是 TX 和 RX 部分的 errors、dropped、overruns、carrier 以及 collisions 等指標不為 0 時,通常表示出現了網路 I/O 問題。其中:

ifconfig 和 ip 只顯示了網路介面收發數據包的統計信息,但在實際的性能問題中,網路協議棧中的統計信息,我們也必須關注。你可以用 netstat 或者 ss ,來查看套接字、網路棧、網路介面以及路由表的信息。

我個人更推薦,使用 ss 來查詢網路的連接信息,因為它比 netstat 提供了更好的性能(速度更快)。

比如,你可以執行下面的命令,查詢套接字信息:

netstat 和 ss 的輸出也是類似的,都展示了套接字的狀態、接收隊列、發送隊列、本地地址、遠端地址、進程 PID 和進程名稱等。

其中,接收隊列(Recv-Q)和發送隊列(Send-Q)需要你特別關注,它們通常應該是 0。當你發現它們不是 0 時,說明有網路包的堆積發生。當然還要注意,在不同套接字狀態下,它們的含義不同。

當套接字處於連接狀態(Established)時,

當套接字處於監聽狀態(Listening)時,

所謂全連接,是指伺服器收到了客戶端的 ACK,完成了 TCP 三次握手,然後就會把這個連接挪到全連接隊列中。這些全連接中的套接字,還需要被 accept() 系統調用取走,伺服器才可以開始真正處理客戶端的請求。

與全連接隊列相對應的,還有一個半連接隊列。所謂半連接是指還沒有完成 TCP 三次握手的連接,連接只進行了一半。伺服器收到了客戶端的 SYN 包後,就會把這個連接放到半連接隊列中,然後再向客戶端發送 SYN+ACK 包。

類似的,使用 netstat 或 ss ,也可以查看協議棧的信息:

這些協議棧的統計信息都很直觀。ss 只顯示已經連接、關閉、孤兒套接字等簡要統計,而 netstat 則提供的是更詳細的網路協議棧信息。

比如,上面 netstat 的輸出示例,就展示了 TCP 協議的主動連接、被動連接、失敗重試、發送和接收的分段數量等各種信息。

接下來,我們再來看看,如何查看系統當前的網路吞吐量和 PPS。在這里,我推薦使用我們的老朋友 sar,在前面的 CPU、內存和 I/O 模塊中,我們已經多次用到它。

給 sar 增加 -n 參數就可以查看網路的統計信息,比如網路介面(DEV)、網路介面錯誤(EDEV)、TCP、UDP、ICMP 等等。執行下面的命令,你就可以得到網路介面統計信息:

這兒輸出的指標比較多,我來簡單解釋下它們的含義。

其中,Bandwidth 可以用 ethtool 來查詢,它的單位通常是 Gb/s 或者 Mb/s,不過注意這里小寫字母 b ,表示比特而不是位元組。我們通常提到的千兆網卡、萬兆網卡等,單位也都是比特。如下你可以看到,我的 eth0 網卡就是一個千兆網卡:

其中,Bandwidth 可以用 ethtool 來查詢,它的單位通常是 Gb/s 或者 Mb/s,不過注意這里小寫字母 b ,表示比特而不是位元組。我們通常提到的千兆網卡、萬兆網卡等,單位也都是比特。如下你可以看到,我的 eth0 網卡就是一個千兆網卡:

我們通常使用帶寬、吞吐量、延時等指標,來衡量網路的性能;相應的,你可以用 ifconfig、netstat、ss、sar、ping 等工具,來查看這些網路的性能指標。

小狗同學問到: 老師,您好 ss —lntp 這個 當session處於listening中 rec-q 確定是 syn的backlog嗎?
A: Recv-Q為全連接隊列當前使用了多少。 中文資料里這個問題講得最明白的文章: https://mp.weixin.qq.com/s/yH3PzGEFopbpA-jw4MythQ

看了源碼發現,這個地方講的有問題.關於ss輸出中listen狀態套接字的Recv-Q表示全連接隊列當前使用了多少,也就是全連接隊列的當前長度,而Send-Q表示全連接隊列的最大長度

Ⅸ Linux裡面ss -ntl命令作用是什麼

ss 是 Socket Statistics 的縮寫。ss 命令可以用來獲取 socket 統計信息,它顯示的內容和 netstat 類似。但 ss 的優勢在於它能夠顯示更多更詳細的有關 TCP 和連接狀態的信息,而且比 netstat 更快。當伺服器的 socket 連接數量變得非常大時,無論是使用 netstat 命令還是直接 cat /proc/net/tcp,執行速度都會很慢。ss 命令利用到了 TCP 協議棧中 tcp_diag。tcp_diag 是一個用於分析統計的模塊,可以獲得 Linux 內核中第一手的信息,因此 ss 命令的性能會好很多。《Linux就該這么學》有Linux命令大全
常用選項
-h, --help 幫助
-V, --version 顯示版本號
-t, --tcp 顯示 TCP 協議的 sockets
-u, --udp 顯示 UDP 協議的 sockets
-x, --unix 顯示 unix domain sockets,與 -f 選項相同
-n, --numeric 不解析服務的名稱,如 "22" 埠不會顯示成 "ssh"
-l, --listening 只顯示處於監聽狀態的埠
-p, --processes 顯示監聽埠的進程(Ubuntu 上需要 sudo)
-a, --all 對 TCP 協議來說,既包含監聽的埠,也包含建立的連接
-r, --resolve 把 IP 解釋為域名,把埠號解釋為協議名稱
常見用例
如果不添加選項 ss 命令默認輸出所有建立的連接(不包含監聽的埠),包括 tcp, udp, and unix socket 三種類型的連接:
查看主機監聽的埠 $ ss -tnl
蠻少看見用-ntl參數的。

Ⅹ 怎樣跟蹤調試linux TCP/IP協議棧源代碼

linux的話,推薦買本書,最好是教材,看著學,裝個linux虛擬機,照著書一步步操作,多做多練就會了。而TCP/IP高級linux編程了,如果您沒有基礎的話建議先學習unix環境高級編程,然後在需TCPIP

閱讀全文

與linuxtcp協議棧分析相關的資料

熱點內容
雲存儲搭建伺服器 瀏覽:849
被禁的40部小說有哪些 瀏覽:245
通吃小子好小子小傑 瀏覽:42
肉多的霸總文 瀏覽:943
可以投屏的電影網站 瀏覽:400
黃有聲故事 瀏覽:484
重生末世之塵華 瀏覽:746
優化演算法的輸入維數越不容易收斂 瀏覽:777
java極限編程pdf 瀏覽:130
塞葡萄的是哪個小說 瀏覽:821
架設傳奇命令 瀏覽:953
關於醫生的小說 瀏覽:520
愛情動作電影 瀏覽:808
八零電子書txt免費下載網站 瀏覽:509
登陸遼事通顯示伺服器連接錯誤怎麼辦 瀏覽:547
9米高隧道演算法 瀏覽:508
池袋最強作品集txt 瀏覽:784
app專題推薦在哪裡 瀏覽:279
神雲伺服器顯示燈 瀏覽:134
程序員磨合期技巧 瀏覽:849