㈠ 什么是鱼群算法
artifical fish-warm algorithm
xp(v1,v2……vn)个体的当前位置,d(p,q)=(1/n)*{[v(p,1)-v(q,1)]^2+……[v
(p,n)-v(q,n)]^2},两个体的距离,(不知道为什么用1/n而不是开平方);visual
一只鱼的感知距离。@拥挤度因子。
第一步:觅食人工鱼当前位置为Xi,在可见域内随机选择一个位置Xj(d(ij)
<=visual),如xj优于xi向xj前进一步,否则随机移动一步。如出现不满足约束则
剪去。X(j+1,k)={if x(i,k)=x(j,k) 不变,else x(j+1,k)=随机(0,1)}。
第二步:聚群:
xi可见域内共有nf1条鱼。形成集合KJi,KJi={Xj|Dij<=visual},if KJi不为空,
then
X(center)=(xj1+xj2+.....xjn)/nf1(xjk属于kji)
X(center,k)=0,X(center,k)<0.5 1,X(center,k)>=0.5
若:FCc/nf1>@FCi(FCc为中心食物浓度,FCi为Xi点食物浓度)
则:向中心移动:X(i+1,k)=不变,当Xik=X(center,k)时;Xik=随机(0,1),当
Xik!=X(center,k)时;
若:FCc/nf1<@FCi
则:进行觅食
第三步:追尾
在visual范围内,某一个体食物浓度最大则称为Xmax,若:FCmax>@FCi,则向它移动
:X(i+1,k)=当X(i,k)=X(max,k)时,X(i,k)不变,当X(i,k)!=X(max,k)时,X(i,k)=
随机(0,1)
第四步:公告板
在运算过程中,用公告板始终记录下最优FCi
㈡ 鱼群算法是什么
和蚁群算法其实是一样的,生物那方面不说了,主要是生成随机数,经过数次迭代,一次次计算目标函数值从而优化答案,最后看答案分布,这样就能计算解决全局最优,因为鱼群算法能够跳出局部最优,所以应用于目标函数的最大值最小值是很有用的,希望能帮到你
㈢ 什么是粒子群算法
粒子群算法介绍(摘自http://blog.sina.com.cn/newtech)
优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较着名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.
粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .
粒子群算法
1. 引言
粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究
PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍
同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域
2. 背景: 人工生命
"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容
1. 研究如何利用计算技术研究生物现象
2. 研究如何利用生物技术研究计算问题
我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.
现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为
例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.
在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.
粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.
3. 算法介绍
如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索
PSO 初始化为一群随机粒子(随机解)。然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。
在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置
v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)
v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.
程序的伪代码如下
For each particle
____Initialize particle
END
Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End
____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained
在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax
4. 遗传算法和 PSO 的比较
大多数演化计算技术都是用同样的过程
1. 种群随机初始化
2. 对种群内的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关
3. 种群根据适应值进行复制
4. 如果终止条件满足的话,就停止,否则转步骤2
从以上步骤,我们可以看到PSO和GA有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解
但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。
与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解
5. 人工神经网络 和 PSO
人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。
演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。
不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值
演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦
最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题
这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。
我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。
6. PSO的参数设置
从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数
PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误
PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置
粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200
粒子的长度: 这是由优化问题决定, 就是问题解的长度
粒子的范围: 由优化问题决定,每一维可是设定不同的范围
Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20
学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间
中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.
全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.
另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)
㈣ 蚁群算法的优缺点是什么人工鱼群算法的优缺点是什么
针对不同的研究方向,它所体现出来的优缺点是不一样的,不能一概而论的。
㈤ 计算机学习的分类
分类;数据挖掘 分类是数据挖掘的重要任务之一,分类在实际应用中有广泛的应用,如医疗事业、信用等级等。近年来,分类方法得到了发展,本文对这些方法进行了归纳分析,总结了今后分类方法发展的方向。 1引言 分类是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。分类可描述如下:输入数据,或称训练集是一条条记录组成的。每一条记录包含若干条属性,组成一个特征向量。训练集的每条记录还有一个特定的类标签与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:。在这里vi表示字段值,c表示类别。 分类作为数据挖掘的一个重要分支,在商业、医学、军事、体育等领域都有广泛的应用,在过去的十多年中引起很多来自不同领域学者的关注和研究。除了基本的统计分析方法外,数据挖掘技术主要有:神经网络、决策树、粗糙集、模糊集、贝叶斯网络、遗传算法、k近邻分类算法与支持向量机等。 不同的分类器有不同的特点,目前有三种分类器评价或比较尺度:1)预测准确度。预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10折分层交叉验证法;2)计算复杂度。计算复杂度依赖于具体的实现细节和硬件环境,空间和时间的复杂度问题将是非常重要的一个环节;3)模型描述的简洁度。模型描述越简洁越受欢迎,如采用规则表示的分类器结果就较容易理解,而神经网络方法产生的结果就难以理解。不同的算法有不同的特点,充分认识各算法的优点和存在的缺陷,掌握其适应的环境,方便研究者明确算法的改进和研究,本文主要对算法的研究现状进行分析和比较。2分类方法的发展 2.1决策树的分类方法 ID3算法是较早的决策树归纳算法。当前最有影响的决策树算法是Quinlan于1986年提出的ID3和1993年提出的C4.5。ID3选择增益值最大的属性划分训练样本,其目的是进行分裂时系统的熵最小,从而提高算法的运算速度和精确度。这种方法的优点是描述简单、分类速度快和产生的分类规则易于理解;但缺点是抗噪性差、训练正例和反例较难控制以及是非递增学习算法。C4.5是ID3的改进算法,不仅可以处理离散值属性,还能处理连续值属性,但是也不能进行增量学习。 SLIQ是一个能够处理连续及离散属性的决策树分类器。该算法针对C4.5分类算法产生的样本反复扫描和排序低效问题,采用了预排序和宽度优先两项技术。预排序技术消除了结点数据集排序,宽度优先为决策树中每个叶结点找到了最优分裂标准。这些技术结合使SLIQ能够处理大规模的数据集,并能对具有大量的类、属性与样本的数据集分类;并且该算法代价不高且生成紧凑精确的树。缺点是内存驻留数据会随着输入纪录数线性正比增大,限制了分类训练的数据量。 SPRINT方法完全不受内存的限制,并且处理速度很快,且可扩展。为了减少驻留于内存的数据量,该算法进一步改进了决策树算法的数据结构,去掉了SLIQ中需要驻留于内存的类别列表,将类别合并到每个属性列表中。但是对非分裂属性的属性列表进行分裂却比较困难,因此该算法的可扩展性较差。 2.2贝叶斯分类方法 贝叶斯分类是统计学分类方法,是利用Bayes定理来预测一个未知类别的样本可能属性,选择其可能性最大的类别作为样本的类别。朴素贝叶斯网络作为一种快速而高效的算法而受到人们的关注,但是其属性独立性并不符合现实世界,这样的假设降低了朴素贝叶斯网络的性能;但是如果考虑所有属性之间的依赖关系,使其表示依赖关系的能力增强,允许属性之间可以形成任意的有向图,由于其结构的任意性,这样使得贝叶斯网络的结构难以学习,然而,贝叶斯网络的学习是一个NP-Complete问题。 目前对于贝叶斯网络的改进主要包括了:1)基于属性选择的方法,保证选择的属性之间具有最大的属性独立性,其中代表算法是由Langley提出SBC;2)扩展朴素贝叶斯网络的结构,考虑属性之间的依赖关系,降低属性独立性假设,其中代表算法是由Friedman提出树扩展的贝叶斯网络TAN;3)基于实例的学习算法。 其中1)、2)的算法是根据训练集合构造一个分类器,是一种积极的学习算法,3)的方法是一种消极的学习算法。 2.3粗糙集分类方法 粗糙集理论是一种刻划不完整和不确定性数据的数学工具,不需要先验知识,能有效处理各种不完备,从中发现隐含的知识,并和各种分类技术相结合建立起能够对不完备数据进行分类的算法。粗糙集理论包含求取数据中最小不变集和最小规则集的理论,即约简算法,这也是粗糙集理论在分类中的主要应用。 2.4神经网络 神经网络是分类技术中重要方法之一,是大量的简单神经元按一定规则连接构成的网络系统。它能够模拟人类大脑的结构和功能,采用某种学习算法从训练样本中学习,并将获取的知识存储在网络各单元之间的连接权中。神经网络主要有前向神经网络、后向神经网络和自组织网络。目前神经网络分类算法研究较多集中在以BP为代表的神经网络上。文献提出了粒子群优化算法用于神经网络训练,在训练权值同时删除冗余连接,与BP结果比较表明算法的有效性。文献提出旋转曲面变换粒子群优化算法的神经网络,使待优化函数跳出局部极值点,提高训练权值的效率。 2.5K近邻分类算法 K近邻分类算法是最简单有效的分类方法之一,是在多维空间中找到与未知样本最近邻的K个点,并根据这K个点的类别判断未知样本的类别。但是有两个最大缺点:1)由于要存储所有的训练数据,所以对大规模数据集进行分类是低效的;2)分类的效果在很大程度上依赖于K值选择的好坏。文献提出一种有效的K近邻分类算法,利用向量方差和小波逼近系数得出两个不等式,根据这两个不等式,分类效率得到了提高。文献提出用粒子群优化算法对训练样本进行有指导的全局随机搜索,掠过大量不可能的K向量,该算法比KNN方法计算时间降低了70%。 2.6基于关联规则挖掘的分类方法 关联分类方法一般由两部组成:第一步用关联规则挖掘算法从训练数据集中挖掘出所有满足指定支持度和置信度的类关联规则,支持度用于衡量关联规则在整个数据集中的统计重要性,而置信度用于衡量关联规则的可信程度;第二步使用启发式方法从挖掘出的类关联规则中挑选出一组高质量的规则用于分类。 Agrawal等人于1993年提出了算法AIS和SETM,1994年又提出了Apriori和AprioriTid,后两个算法和前两个算法的不同之处在于:在对数据库的一次遍历中,那些候选数据项目被计数以及产生候选数据项目集的方法。但前两者方法的缺点是会导致许多不必要的数据项目集的生成和计数。由于目前日常生活中如附加邮递、目录设计、追加销售、仓储规划都用到了关联规则,因此首先要考虑关联规则的高效更新问题,D.w.cheung提出了增量式更新算法FUP,它的基本框架和Apriori是一致的;接着冯玉才等提出了两种高效的增量式更新算法IUA和PIUA,主要考虑当最小支持度和最小可信度发生变化时,当前交易数据库中关联规则的更新问题。 2.7支持向量机方法的发展 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础之上的。根据有限样本、在模型的复杂性和学习能力之间寻求折衷,以期获得最好推广能力。它非常适合于处理非线性问题。分类问题是支持向量机最为成熟和应用最广的算法。但是由于SVM的训练时间会随着数据集的增大而增加,所以在处理大规模数据集时,SVM往往需要较长的训练时间。 文献提出了一种多分类问题的改进支持向量机,将GA和SVM相结合,构造了一种参数优化GA-SVM,该方法在多分类非平衡问题上,提高了分类正确率,也提高了学习时间。文献提出了一种新的支持向量机增量算法,提出了一种误分点回溯增量算法,先找出新增样本中误分的样本,然后在原样本集寻找距误分点最近的样本作为训练集的一部分,重新构建分类器,有效保留样本的分类,结果表明比传统的SVM有更高的分类精度。 2.8基于群的分类方法 这种方法可以看作是进化算法的一个新的分支,它模拟了生物界中蚁群、鱼群和鸟群在觅食或者逃避敌人时的行为,对基于群的分类方法研究,可以将这种方法分为两类:一类是蚁群算法,另一类称为微粒群算法。 文献提出了一种基于蚁群算法的分类规则挖掘算法,针对蚁群算法计算时间长的缺点,提出了一种变异算子,用公用数据作试验将其结果与C4.5和Ant-Miner比较,显示变异算子节省了计算时间。 PSO是进化计算的一个新的分支,它模拟了鸟群或鱼群的行为。在优化领域中,PSO可以与遗传算法相媲美。文献提出了基于粒子群优化算法的模式分类规则获取,算法用于Iris数据集进行分类规则的提取,与其他算法比较显示不仅提高了正确率,而且较少了计算时间。文献将PSO运用于分类规则提取,对PSO进行了改进,改进的算法与C4.5算法比较,试验结果表明,在预测精度和运行速度上都占优势。 由于PSO算法用于分类问题还处于初期,因此要将其运用到大规模的应用中还要大量的研究。3总结 分类是数据挖掘的主要研究内容之一,本文对分类算法进行了分析,从而便于对已有算法进行改进。未来的数据分类方法研究更多地集中在智能群分类领域,如蚁群算法、遗传算法、微粒群算法等分类研究上以及混合算法来进行分类。总之,分类方法将朝着更高级、更多样化和更加综合化的方向发展。参考文献: 邵峰晶,于忠清.数据挖掘原理与算法.中国水利水电出版社,2003. 陈文伟,黄金才.数据仓库与数据挖掘.人民邮电出版社,2004. L.Jiang,H.Zhang,Z.CaiandJ.Su,EvolutionalNaiveBayes,tsApplication,ISICA2005,pp.344-350,. Langley,P.,Sage,S,,,pp.339-406. Friedman,N.,Greiger,D.,Goldszmidt,M.,BayesianNetworkClassifiers,MachineLearning29103-130. T.Mitchell.MachineLearning.NewYork:McGraw-HillPress,1997. 曾黄麟.粗糙理论以及应用.重庆大学出版社,1996. 高海兵、高亮等.基于粒子群优化的神经网络训练算法研究.电子学报,2004,9. 熊勇,陈德钊,胡上序.基于旋转曲面变换PSO算法的神经网络用于胺类有机物毒性分类.分析化学研究报告,2006,3. 乔玉龙,潘正祥,孙圣和.一种改进的快速K近邻分类算法.电子学报,2005,6. 张国英,沙芸,江惠娜.基于粒子群优化的快速KNN分类算法.山东大学学报,2006,6. 黄景涛,马龙华,钱积新.一种用于多分类问题的改进支持向量机.浙江大学学报,2004,12. 毛建洋,黄道.一种新的支持向量机增量算法.华东理工大学学报,2006,8. 吴正龙,王儒敬等.基于蚁群算法的分类规则挖掘算法.计算机工程与应用,2004. 高亮,高海兵等.基于粒子群优化算法的模式分类规则获取.华中科技大学学报.2004,11. 延丽萍,曾建潮.利用多群体PSO生成分类规则.计算机工程与科学,2007,2.
㈥ 名词解释GPO和PSO
GPO (药品集中采购组织)20世纪初期,美国药品集中采购组织(Group purchasing organizations,简称GPO或者GPOs)出现,通过市场竞争将医院的需求通过GPO这样的采购中介进行集中采购。GPO的出现为医疗机构的成本节约,减少美国医疗费用上涨的压力起到了一定的作用。
PSO是粒子群优化算法(——Particle Swarm Optimization)的英文缩写,是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。
㈦ 智能计算/计算智能、仿生算法、启发式算法的区别与关系
我一个个讲好了,
1)启发式算法:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度不一定事先可以预计。意思就是说,启发式算法是根据经验或者某些规则来解决问题,它求得的问题的解不一定是最优解,很有可能是近似解。这个解与最优解近似到什么程度,不能确定。相对于启发式算法,最优化算法或者精确算法(比如说分支定界法、动态规划法等则能求得最优解)。元启发式算法是启发式算法中比较通用的一种高级一点的算法,主要有遗传算法、禁忌搜索算法、模拟退火算法、蚁群算法、粒子群算法、变邻域搜索算法、人工神经网络、人工免疫算法、差分进化算法等。这些算法可以在合理的计算资源条件下给出较高质量的解。
2)仿生算法:是一类模拟自然生物进化或者群体社会行为的随机搜索方法的统称。由于这些算法求解时不依赖于梯度信息,故其应用范围较广,特别适用于传统方法难以解决的大规模复杂优化问题。主要有:遗传算法、人工神经网络、蚁群算法、蛙跳算法、粒子群优化算法等。这些算法均是模仿生物进化、神经网络系统、蚂蚁寻路、鸟群觅食等生物行为。故叫仿生算法。
3)智能计算:也成为计算智能,包括遗传算法、模拟退火算法、禁忌搜索算法、进化算法、蚁群算法、人工鱼群算法,粒子群算法、混合智能算法、免疫算法、神经网络、机器学习、生物计算、DNA计算、量子计算、模糊逻辑、模式识别、知识发现、数据挖掘等。智能计算是以数据为基础,通过训练建立联系,然后进行问题求解。
所以说,你接触的很多算法,既是仿生算法,又是启发式算法,又是智能算法,这都对。分类方法不同而已。
楼主,我这么辛苦给你打这么字,给我多加点悬赏分吧!谢谢了哈
㈧ 鸟群和鱼群是如何在高速运动的同时互相交流协调方向的
鱼群的同步率非常高,因为它们都遵循一条规则:“如果前面的鱼改变方向,后面的鱼也会随着改变方向,如果旁边的鱼游得离你太远就加速,如果太近就减速。”
鸟类也有类似的规则。
㈨ 人工鱼群算法有哪些
具体算法如下:
1、起源人工鱼群算法是李晓磊等人于2002年在动物群体智能行为研究的基础上提出的一种新型方盛优化算法,该算法根据水域中鱼生存数目最多的地方就是本水域中富含营养物质最多的地方这一特点来模拟鱼群的觅食行为而实现寻优。
2、算法主要利用鱼的三大基本行为:觅食、聚群和追尾行为,采用自上而下的寻优模式从构造个体的底层行为开始,通过鱼群中各个体的局部寻优,达到全局最优值在群体中凸显出来的目的。
3该方法采用自下而上的寻优思路,首先设计单个个体的感知、行为机制,然后将一个或一群实体放置在环境中,让他们在环境的交互作用中解决问题。
4、生态学基础在一片水域中,鱼存在的数目最多的地方就是本水域富含营养物质最多的地方,依据这一特点来模仿鱼群的觅食、聚群、追尾等行为,从而实现全局最优,这就是鱼群算法的基本思想。鱼类活动中,觅食行为、群聚行为、追尾行为和随机行为与寻优命题的解决有较为密切的关系,如何利用简单有效的方式来构造和实现这些行为将是算法实现的主要为题。
5、人工鱼的结构模型人工鱼是真实鱼抽象化、虚拟化的一个实体,其中封装了自身数据和一系列行为,可以接受环境的刺激信息,做出相应的活动。其所在的环境由问题的解空间和其他人工鱼的状态,它在下一时刻的行为取决于自身的状态和环境的状态,并且它还通过自身的活动来影响环境,进而影响其他人工鱼的活动。