导航:首页 > 源码编译 > 模拟退火算法matlab代码

模拟退火算法matlab代码

发布时间:2025-09-01 07:07:56

㈠ 求货郎担问题的matlab算法

货郎担问题有很多解法,模拟退火,遗传算法,动态规划等。

基于matlab TSP问题遗传算法的实现
%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序
%D是距离矩阵,n为种群个数,建议取为城市个数的1~2倍,
%C为停止代数,遗传到第 C代时程序停止,C的具体取值视问题的规模和耗费的时间而定
%m为适应值归一化淘汰加速指数 ,最好取为1,2,3,4 ,不宜太大
%alpha为淘汰保护指数,可取为0~1之间任意小数,取1时关闭保护功能,最好取为0.8~1.0
%R为最短路径,Rlength为路径长度
function [R,Rlength]=geneticTSP(D,n,C,m,alpha)

[N,NN]=size(D);
farm=zeros(n,N);%用于存储种群
for i=1:n
farm(i,:)=randperm(N);%随机生成初始种群
end
R=farm(1,:);%存储最优种群
len=zeros(n,1);%存储路径长度
fitness=zeros(n,1);%存储归一化适应值
counter=0;

while counter<c

for i=1:n
len(i,1)=myLength(D,farm(i,:));%计算路径长度
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);%计算归一化适应值
rr=find(len==minlen);
R=farm(rr(1,1),:);%更新最短路径

FARM=farm;%优胜劣汰,nn记录了复制的个数
nn=0;
for i=1:n
if fitness(i,1)>=alpha*rand
nn=nn+1;
FARM(nn,:)=farm(i,:);
end
end
FARM=FARM(1:nn,:);

[aa,bb]=size(FARM);%交叉和变异
while aa<n
if nn<=2
nnper=randperm(2);
else
nnper=randperm(nn);
end
A=FARM(nnper(1),:);
B=FARM(nnper(2),:);
[A,B]=intercross(A,B);
FARM=[FARM;A;B];
[aa,bb]=size(FARM);
end
if aa>n
FARM=FARM(1:n,:);%保持种群规模为n
end

farm=FARM;
clear FARM
counter=counter+1

end

Rlength=myLength(D,R);

function [a,b]=intercross(a,b)
L=length(a);
if L<=10%确定交叉宽度
W=1;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10);
else
W

http://blog.renren.com/share/231644124/531791903

㈡ 遗传算法、数值算法、爬山算法、模拟退火 各自的优缺点

遗传算法:其优点是能很好地处理约束,跳出局部最优,最终得到全局最优解。缺点是收敛速度慢,局部搜索能力弱,运行时间长,容易受到参数的影响。

模拟退火:具有局部搜索能力强、运行时间短的优点。缺点是全局搜索能力差,容易受到参数的影响。

爬山算法:显然爬山算法简单、效率高,但在处理多约束大规模问题时,往往不能得到较好的解决方案。

数值算法:这个数值算法的含义太宽泛了,指的是哪种数值算法,阵列算法与爬山算法一样,各有优缺点。

(2)模拟退火算法matlab代码扩展阅读:

注意事项:

遗传算法的机制比较复杂,在Matlab中已经用工具箱中的命令进行了打包,通过调用可以非常方便的使用遗传算法。

函数GA:[x,Fval,reason]=GA(@fitnessfun,Nvars,options)x为最优解,Fval为最优值,@Fitnessness为目标函数,Nvars为自变量个数,options为其他属性设置。系统的默认值是最小值,所以函数文档中应该加上一个减号。

要设置选项,您需要以下函数:options=GaOptimset('PropertyName1','PropertyValue1','PropertyName2','PropertyName3','PropertyValue3'…)通过该函数,可以确定一些遗传算法的参数。

㈢ 求一个模拟退火算法优化BP神经网络的一个程序(MATLAB)

“模拟退火”算法是源于对热力学中退火过程的模拟,在某一给定初温下,通过缓慢下降温度参数,使算法能够在多项式时间内给出一个近似最优解。退火与冶金学上的‘退火’相似,而与冶金学的淬火有很大区别,前者是温度缓慢下降,后者是温度迅速下降。

“模拟退火”的原理也和金属退火的原理近似:我们将热力学的理论套用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。


这个算法已经很多人做过,可以优化BP神经网络初始权值。附件是解决TSP问题的matlab代码,可供参考。看懂了就可以自己编程与bp代码结合。

阅读全文

与模拟退火算法matlab代码相关的资料

热点内容
程序员能直接访问的寄存器 浏览:580
怎么卸载ftp服务器软件 浏览:867
lunix安装php 浏览:939
php文件解密工具 浏览:813
恋听网app去哪里下载 浏览:22
phpini注释 浏览:700
mac编译慢cpu没跑满 浏览:449
东方卫视直播在哪个app上可以看 浏览:561
起跑线pdf 浏览:946
eclipse编辑java 浏览:969
闪迪128g优盘加密改为中文 浏览:529
php讲座 浏览:541
linuxclass文件 浏览:958
对数函数变底运算法则 浏览:916
php下载统计代码 浏览:320
找别人写程序包括源码吗 浏览:809
python读取标准输入 浏览:880
python怎么调用knn 浏览:815
excel怎么保存pdf 浏览:75
模拟退火算法matlab代码 浏览:123