导航:首页 > 源码编译 > 背包问题近似算法

背包问题近似算法

发布时间:2025-09-01 21:25:56

① 关于C++ 01背包问题

1.摘要

以背包问题为例,介绍了贪心法与动态规划的关系以及两个方案在解决背包问题上的比较。贪心法什么时候能取到最优界并无一般理论,但对于普通背包问题我们有一个完美的结果——贪心法可取到最优解。介绍了其它一些对背包问题的研究或者拓展。

2.介绍

贪心算法是我们在《算法设计技巧与分析》这门课中所学习到的几种重要的算法之一,顾名思义,贪心算法总是作出在当前看来最好的选择。也就是该算法并不从整体最优考虑,它所作出的选择只是在某种意义上的从局部的最优选择,寻找到解决问题的次优解的方法。虽然我们希望贪心算法得到的最终结果也是整体最优的,但是在某些情况下,该算法得到的只是问题的最优解的近似。

3.算法思想:

贪心法的基本思路:

——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。

该算法存在问题:

1.不能保证求得的最后解是最佳的;

2.不能用来求最大或最小解问题;

3.只能求满足某些约束条件的可行解的范围。

实现该算法的过程:

在约束下最大。

(2)动态规划解决方案:是解决0/1背包问题的最优解

(i)若i=0或j=0,V[i,j] = 0

(ii)若j<si, V[i,j] = V[i-1,j](仅用最优的方法,选取前i-1项物品装入体积为j的背包,因为第i项体积大于j,装不下这一项,所以背包里面的i-1项就达到最大值)

(iii)若i>0和j>=si, Max{V[i-1,j],V[i-1,j-si]+vi} (第一种情况是包中的i-1项已经达到最大值,第二种情况是i-1项占j-si的体积再加上第i项的总的价值,取这两种情况的最大值。)

//sj和vj分别为第j项物品的体积和价值,C是总体积限制。

//V[i,j]表示从前i项{u1,u2,…,un}中取出来的装入体积为j的背包的物品的最大//价值。[13]

(3)贪心算法解决背包问题有几种策略:

(i)一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。这种策略不能保证得到最优解。例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 105。当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。而最优解为[ 0 , 1 , 1 ],其总价值为3 0。

(ii)另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。考虑n= 2 ,w=[10,20], p=[5,100], c= 2 5。当利用重量贪婪策略时,获得的解为x =[1,0],比最优解[ 0 , 1 ]要差。

(iii)还有一种贪婪准则,就是我们教材上提到的,认为,每一项计算yi=vi/si,即该项值和大小的比,再按比值的降序来排序,从第一项开始装背包,然后是第二项,依次类推,尽可能的多放,直到装满背包。

有的参考资料也称为价值密度pi/wi贪婪算法。这种策略也不能保证得到最优解。利用此策略试解n= 3 ,w=[20,15,15], p=[40,25,25], c=30时的最优解。虽然按pi /wi非递(增)减的次序装入物品不能保证得到最优解,但它是一个直觉上近似的解。

而且这是解决普通背包问题的最优解,因为在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。

如图1,大体上说明了动态规划解决的0/1背包问题和贪心算法解决的问题之间的区别,

图1

(4)贪心算法解决背包问题的算法实现:

代码如下:

#include<iostream.h>
structgoodinfo
{
floatp;//物品效益
floatw;//物品重量
floatX;//物品该放的数量
intflag;//物品编号
};//物品信息结构体
voidInsertionsort(goodinfogoods[],intn)
{//插入排序,按pi/wi价值收益进行排序,一般教材上按冒泡排序
intj,i;
for(j=2;j<=n;j++)
{
goods[0]=goods[j];
i=j-1;
while(goods[0].p>goods[i].p)
{
goods[i+1]=goods[i];
i--;
}
goods[i+1]=goods[0];
}
}//按物品效益,重量比值做升序排列
voidbag(goodinfogoods[],floatM,intn)
{

floatcu;
inti,j;
for(i=1;i<=n;i++)
goods[i].X=0;
cu=M;//背包剩余容量
for(i=1;i<n;i++)
{
if(goods[i].w>cu)//当该物品重量大与剩余容量跳出
break;
goods[i].X=1;
cu=cu-goods[i].w;//确定背包新的剩余容量
}
if(i<=n)
goods[i].X=cu/goods[i].w;//该物品所要放的量
/*按物品编号做降序排列*/
for(j=2;j<=n;j++)
{
goods[0]=goods[j];
i=j-1;
while(goods[0].flag<goods[i].flag)
{
goods[i+1]=goods[i];
i--;
}
goods[i+1]=goods[0];
}
///////////////////////////////////////////
cout<<"最优解为:"<<endl;
for(i=1;i<=n;i++)
{
cout<<"第"<<i<<"件物品要放:";
cout<<goods[i].X<<endl;
}
}
voidmain()
{
cout<<"|--------运用贪心法解背包问题---------|"<<endl;
intj,n;floatM;
goodinfo*goods;//定义一个指针
while(j)
{
cout<<"请输入物品的总数量:";
cin>>n;
goods=newstructgoodinfo[n+1];//
cout<<"请输入背包的最大容量:";
cin>>M;
cout<<endl;
inti;
for(i=1;i<=n;i++)
{goods[i].flag=i;
cout<<"请输入第"<<i<<"件物品的重量:";
cin>>goods[i].w;
cout<<"请输入第"<<i<<"件物品的效益:";
cin>>goods[i].p;
goods[i].p=goods[i].p/goods[i].w;//得出物品的效益,重量比
cout<<endl;

}
Insertionsort(goods,n);
bag(goods,M,n);
cout<<"press<1>torunagian"<<endl;
cout<<"press<0>toexit"<<endl;
cin>>j;
}
}
阅读全文

与背包问题近似算法相关的资料

热点内容
如何下载融联app 浏览:366
安卓编译平台搭建 浏览:783
mc国际版Java如何玩服务器 浏览:863
数据挖掘导论pdf 浏览:125
电视连不上网服务器什么问题 浏览:769
机架服务器怎么降低功耗 浏览:767
vs2017自动编译 浏览:857
怎么上升安卓系统 浏览:701
ipad怎么换国外app 浏览:193
php扫一扫 浏览:559
vim执行命令 浏览:724
传奇加密视频教程 浏览:917
php56curl 浏览:368
pdf复制粘贴word 浏览:17
单片机自动窗帘 浏览:529
云主机还是独立服务器 浏览:499
p2p网站源码免费 浏览:954
一份文件建立一个文件夹 浏览:9
单片机与电脑的通信 浏览:300
不同网络服务器如何一起 浏览:777