‘壹’ 什么是knn算法
作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。在应用KNN算法解决问题的时候,要注意两个方面的问题——样本权重和特征权重。利用SVM来确定特征的权重,提出了基于SVM的特征加权算法(FWKNN,feature
weighted
KNN)。实验表明,在一定的条件下,FWKNN能够极大地提高分类准确率。
‘贰’ knn和kmeans的区别是什么
区别1:分类的目标不同。
聚类和分类最大的不同在于,knn分类的目标是事先已知的,而kmeans聚类则不一样,聚类事先不知道目标变量是什么,类别没有像分类那样被预先定义出来,所以,聚类有时也叫无监督学习。聚类分析试图将相似的对象归入同一簇,将不相似的对象归为不同簇,
区别2:速度不同。
K-means算法虽然比较容易实现,但是其可能收敛到局部最优解,且在大规模数据集上收敛速度相对较慢。
区别3:K的含义不同。
KNN,K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label设为c。
K-Means,K的含义:K是人工固定好的数字,假设数据集合可以分为K个簇,由于是依靠人工定好,需要一点先验知识。
‘叁’ 为什么k临近算法不能处理特征很多的数据集
机器学习中常常要用到分类算法,在诸多的分类算法中有一种算法名为k-近邻算法,也称为kNN算法。
一、kNN算法的工作原理
二、适用情况
三、算法实例及讲解
---1.收集数据
---2.准备数据
---3.设计算法分析数据
---4.测试算法
一、kNN算法的工作原理
官方解释:存在一个样本数据集,也称作训练样本集,并且样本中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系,输入没有标签的新数据后,将新数据的每个特征与样本集中的数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签。一般来说,我们只选择样本集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数,最后,选择k个最相似的数据中出现次数最多的分类,作为新数据的分类。
我的理解:k-近邻算法就是根据“新数据的分类取决于它的邻居”进行的,比如邻居中大多数都是退伍军人,那么这个人也极有可能是退伍军人。而算法的目的就是先找出它的邻居,然后分析这几位邻居大多数的分类,极有可能就是它本省的分类。
二、适用情况
优点:精度高,对异常数据不敏感(你的类别是由邻居中的大多数决定的,一个异常邻居并不能影响太大),无数据输入假定;
缺点:计算发杂度高(需要计算新的数据点与样本集中每个数据的“距离”,以判断是否是前k个邻居),空间复杂度高(巨大的矩阵);
适用数据范围:数值型(目标变量可以从无限的数值集合中取值)和标称型(目标变量只有在有限目标集中取值)。
‘肆’ 什么叫做knn算法
在模式识别领域中,最近邻居法(KNN算法,又译K-近邻算法)是一种用于分类和回归的非参数统计方法。
在这两种情况下,输入包含特征空间(Feature Space)中的k个最接近的训练样本。
1、在k-NN分类中,输出是一个分类族群。一个对象的分类是由其邻居的“多数表决”确定的,k个最近邻居(k为正整数,通常较小)中最常见的分类决定了赋予该对象的类别。若k=1,则该对象的类别直接由最近的一个节点赋予。
2、在k-NN回归中,输出是该对象的属性值。该值是其k个最近邻居的值的平均值。
最近邻居法采用向量空间模型来分类,概念为相同类别的案例,彼此的相似度高,而可以借由计算与已知类别案例之相似度,来评估未知类别案例可能的分类。
K-NN是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习。k-近邻算法是所有的机器学习算法中最简单的之一。
无论是分类还是回归,衡量邻居的权重都非常有用,使较近邻居的权重比较远邻居的权重大。例如,一种常见的加权方案是给每个邻居权重赋值为1/ d,其中d是到邻居的距离。
邻居都取自一组已经正确分类(在回归的情况下,指属性值正确)的对象。虽然没要求明确的训练步骤,但这也可以当作是此算法的一个训练样本集。
k-近邻算法的缺点是对数据的局部结构非常敏感。
K-均值算法也是流行的机器学习技术,其名称和k-近邻算法相近,但两者没有关系。数据标准化可以大大提高该算法的准确性。
参数选择
如何选择一个最佳的K值取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一个较好的K值能通过各种启发式技术(见超参数优化)来获取。
噪声和非相关性特征的存在,或特征尺度与它们的重要性不一致会使K近邻算法的准确性严重降低。对于选取和缩放特征来改善分类已经作了很多研究。一个普遍的做法是利用进化算法优化功能扩展,还有一种较普遍的方法是利用训练样本的互信息进行选择特征。
在二元(两类)分类问题中,选取k为奇数有助于避免两个分类平票的情形。在此问题下,选取最佳经验k值的方法是自助法。
‘伍’ 关于KNN算法是否稳定
有可能是训练样本不够,也有可能是KNN算法本身对你要研究的问题就不太适合
‘陆’ KNN算法,k近邻
K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
‘柒’ 机器学习中算法的优缺点之最近邻算法
机器学习中有个算法是十分重要的,那就是最近邻算法,这种算法被大家称为KNN。我们在学习机器学习知识的时候一定要学习这种算法,其实不管是什么算法都是有自己的优缺点的,KNN算法也不例外,在这篇文章中我们就详细的给大家介绍一下KNN算法的优缺点,大家一定要好好学起来哟。
说到KNN算法我们有必要说一下KNN算法的主要过程,KNN算法的主要过程有四种,第一就是计算训练样本和测试样本中每个样本点的距离,第二个步骤就是对上面所有的距离值进行排序(升序)。第三个步骤就是选前k个最小距离的样本。第四个步骤就是根据这k个样本的标签进行投票,得到最后的分类类别。
那么大家是否知道如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一般来说,一个较好的K值可通过各种启发式技术来获取,比如说交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。近邻算法具有较强的一致性结果,随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。
那么KNN算法的优点是什么呢?KNN算法的优点具体体现在六点,第一就是对数据没有假设,准确度高,对outlier不敏感。第二就是KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练。第三就是KNN理论简单,容易实现。第四就是理论成熟,思想简单,既可以用来做分类也可以用来做回归。第五就是可用于非线性分类。第六就是训练时间复杂度为O(n)。由此可见,KNN算法的优点是有很多的。
那么KNN算法的缺点是什么呢?这种算法的缺点具体体现在六点,第一就是样本不平衡时,预测偏差比较大。第二就是KNN每一次分类都会重新进行一次全局运算。第三就是k值大小的选择没有理论选择最优,往往是结合K-折交叉验证得到最优k值选择。第四就是样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少)效果差。第五就是需要大量内存。第六就是对于样本容量大的数据集计算量比较大。
正是由于这些优点和缺点,KNN算法应用领域比较广泛,在文本分类、模式识别、聚类分析,多分类领域中处处有KNN算法的身影。
在这篇文章中我们给大家介绍了很多关于KNN算法的相关知识,通过对这些知识的理解相信大家已经知道该算法的特点了吧,希望这篇文章能够帮助大家更好的理解KNN算法。
‘捌’ 请简述为什么kNN算法是懒惰的
kNN算法,对于分类的不同属性定义距离。对于一个新的待分类样本点,只取k个与该样本距离最近的点,然后找这k个点所归属的最多的类做为新样本点的分类。由于只取k个点,不需要全部样本点来做分类,所以说这个算法懒惰。
‘玖’ knn算法是什么
KNN(K- Nearest Neighbor)法即K最邻近法,最初由Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。
介绍
KNN算法本身简单有效,它是一种lazy-learning算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为n,那么KNN的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。