导航:首页 > 源码编译 > 快速排序算法时间复杂度

快速排序算法时间复杂度

发布时间:2022-06-11 12:45:38

1. 快速排序算法在平均情况下的时间复杂度为 求详解

时间复杂度为O(nlogn) n为元素个数
1. 快速排序的三个步骤:
1.1. 找到序列中用于划分序列的元素
1.2. 用元素划分序列
1.3. 对划分后的两个序列重复1,2两个步骤指导序列无法再划分
所以对于n个元素其排序时间为
T(n) = 2*T(n/2) + n (表示将长度为n的序列划分为两个子序列,每个子序列需要T(n/2)
的时间,而划分序列需要n的时间)
而 T(1) = 1 (表示长度为1的序列无法划分子序列,只需要1的时间即可)
T(n) = 2^logn + logn * n (n被不断二分最终只能二分logn次(最优的情况,每次选取
的元素都均分序列))
= n + nlogn
因此T(n) = O(nlogn)
以上是最优情况的推导,因此快速排序在最优情况下其排序时间为O(nlogn),通常平均情况
我们也认为是此值。
在最坏情况下其会退化为冒泡排序,T(n) = T(n - 1) + n (每次选取的元素只能将序列划分为
一段,即自身是 最小元素或最大元素)
因此T(n) = n * (n-1) / 2 相当于O(n^2)

2. 快速排序算法复杂度

快速排序算法的平均时间复杂度为O(nlogn)

3. 快速排序复杂度

快速排序的时间性能取决于快速排序递归的深度,可以用递归树来描述递归算法的执行情况。

最好情况

如图9‐9‐7所示,它是{50,10,90,30, 70,40,80,60,20}在快速排序过程中的递归过程。由于我们的第一个关键字是50,正好是待排序的序列的中间值,因此递归树是平衡的,此时性能也比较好。


由数学归纳法可证明,其数量级为O(nlogn)。

4. 快速排序方法的时间复杂度为O(n^2)=n(n-1)/2中O()是什么意思

O(1): 表示算法的运行时间为常量

O(n): 表示该算法是线性算法

O(㏒2n): 二分查找算法

O(n2): 对数组进行排序的各种简单算法,例如直接插入排序的算法。

O(n3): 做两个n阶矩阵的乘法运算

O(2n): 求具有n个元素集合的所有子集的算法

O(n!): 求具有N个元素的全排列的算法
O(n²)表示当n很大的时候,复杂度约等于Cn²,C是某个常数,简单说就是当n足够大的时候,n的线性增长,复杂度将沿平方增长。
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))
为算法的渐进时间复杂度,简称时间复杂度。

5. 快速排序法的平均时间复杂度是多少

快速排序法的时间复杂度是nlogn(n×log以2为底n的对数)

拓展:

快速排序(Quicksort)是对冒泡排序的一种改进。

快速排序由C. A. R.
Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

附各种排序法的时间复杂度如下:

6. 快速排序等时间复杂度问题

时间复杂度实际上就是程序的关键语句运行的次数。算法复杂度的评价一般是算法对于一个大小固定的样本的执行时间,一般这个时间可以通过一个根据算法评估出来的多项式来表达的。例如,选择排序的复杂度就是O(n^2)[注:选择排序对于长度为n的序列每选出第k个数都要和后面k+1~n数进行比较,所以实际的复杂程度应该是n+n-1+n-2+...+2+1=(n^2+n)/2而在复杂度表示时,n被看作极大的值,所以忽略他的系数和后面的低次项,所以表示成o(n^2)] 对于快速排序,同样可以求出它的平均复杂度是O(NlogN)具体的计算方法可以自己尝试(提示,划分次数是log N 比较次数是N)最坏情况是O(n^2)

7. 快速排序的时间复杂度

快排的平均时间为:T(n) = k*n*lnn
时间复杂度为:O(n*logn)

8. 快速排序的时间复杂度是多少

快速排序的平均时间复杂度是O(nlogn),在最坏情况下的时间复杂度退化为O(n2)

9. 排序算法的时间复杂度

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。

一个优秀的算法可以节省大量的资源。在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。

而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

(9)快速排序算法时间复杂度扩展阅读:

排序算法经过了很长时间的演变,产生了很多种不同的方法。对于初学者来说,对它们进行整理便于理解记忆显得很重要。每种算法都有它特定的使用场合,很难通用。因此,我们很有必要对所有常见的排序算法进行归纳。

排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。

内排序有可以分为以下几类:

(1)、插入排序:直接插入排序、二分法插入排序、希尔排序。

(2)、选择排序:直接选择排序、堆排序。

(3)、交换排序:冒泡排序、快速排序。

(4)、归并排序

(5)、基数排序

10. 快速排序的复杂度怎么算,是多少

这个,我确实一点也不懂,帮你搜索。

1.
快速排序-时空复杂度:
快速排序每次将待排序数组分为两个部分,在理想状况下,每一次都将待排序数组划分成等长两个部分,则需要logn次划分。
而在最坏情况下,即数组已经有序或大致有序的情况下,每次划分只能减少一个元素,快速排序将不幸退化为冒泡排序,所以快速排序时间复杂度下界为O(nlogn),最坏情况为O(n^2)。在实际应用中,快速排序的平均时间复杂度为O(nlogn)。
快速排序在对序列的操作过程中只需花费常数级的空间。空间复杂度S(1)。
但需要注意递归栈上需要花费最少logn最多n的空间。

2.快速排序-随机化算法:
快速排序的实现需要消耗递归栈的空间,而大多数情况下都会通过使用系统递归栈来完成递归求解。在元素数量较大时,对系统栈的频繁存取会影响到排序的效率。
一种常见的办法是设置一个阈值,在每次递归求解中,如果元素总数不足这个阈值,则放弃快速排序,调用一个简单的排序过程完成该子序列的排序。这样的方法减少了对系统递归栈的频繁存取,节省了时间的消费。
一般的经验表明,阈值取一个较小的值,排序算法采用选择、插入等紧凑、简洁的排序。一个可以参考的具体方案:阈值T=10,排序算法用选择排序。
阈值不要太大,否则省下的存取系统栈的时间,将会被简单排序算法较多的时间花费所抵消。
另一个可以参考的方法,是自行建栈模拟递归过程。但实际经验表明,收效明显不如设置阈值。

3.快速排序的最坏情况基于每次划分对主元的选择。基本的快速排序选取第一个元素作为主元。这样在数组已经有序的情况下,每次划分将得到最坏的结果。一种比较常见的优化方法是随机化算法,即随机选取一个元素作为主元。这种情况下虽然最坏情况仍然是O(n^2),但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。”
随机化快速排序的唯一缺点在于,一旦输入数据中有很多的相同数据,随机化的效果将直接减弱。对于极限情况,即对于n个相同的数排序,随机化快速排序的时间复杂度将毫无疑问的降低到O(n^2)。解决方法是用一种方法进行扫描,使没有交换的情况下主元保留在原位置。

4.设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。一趟快速排序的算法是:
1)设置两个变量I、J,排序开始的时候:I=0,J=N-1;
2)以第一个数组元素作为关键数据,赋值给key,即 key=A[0];
3)从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于key的值A[J],并与A[I]交换;
4)从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于key的A[I],与A[J]交换;
5)重复第3、4、5步,直到 I=J; (3,4步是在程序中没找到时候j=j-1,i=i+1。找到并交换的时候i, j指针位置不变。另外当i=j这过程一定正好是i+或j+完成的最后另循环结束)
例如:待排序的数组A的值分别是:(初始关键数据:X=49) 注意关键X永远不变,永远是和X进行比较,无论在什么位子,最后的目的就是把X放在中间,小的放前面大的放后面。
A[0] 、 A[1]、 A[2]、 A[3]、 A[4]、 A[5]、 A[6]:
49 38 65 97 76 13 27
进行第一次交换后: 27 38 65 97 76 13 49
( 按照算法的第三步从后面开始找)
进行第二次交换后: 27 38 49 97 76 13 65
( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时:I=3 )
进行第三次交换后: 27 38 13 97 76 49 65
( 按照算法的第五步将又一次执行算法的第三步从后开始找
进行第四次交换后: 27 38 13 49 76 97 65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时:I=4,J=6 )
此时再执行第三步的时候就发现I=J,从而结束一趟快速排序,那么经过一趟快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。
快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最

阅读全文

与快速排序算法时间复杂度相关的资料

热点内容
積架小型空气压缩机 浏览:555
绿盾文档加密系统哪里有卖 浏览:637
我的世界怎么开挂在服务器里面 浏览:789
西门子自锁正反转编程图 浏览:749
出国英语pdf 浏览:920
算法线性匹配 浏览:674
山东省dns服务器云主机 浏览:554
安卓5g软件怎么隐藏 浏览:839
编译内核空间不足开不了机 浏览:887
汉纪pdf 浏览:474
在哪里下载国家医保app 浏览:657
没有与文件扩展关联的编译工具 浏览:426
我的世界反编译mcp下载 浏览:19
安卓手柄下载什么软件 浏览:70
pushrelabel算法 浏览:850
硬盘资料部分文件夹空白 浏览:617
cssloader的编译方式 浏览:941
java面板大小 浏览:506
怎么用命令方块打出字体 浏览:500
台湾加密货币研究小组 浏览:299