导航:首页 > 源码编译 > 混合a星算法自动泊车

混合a星算法自动泊车

发布时间:2022-06-16 11:05:49

① 游戏中的A星算法怎么写

首先A星算法占内存和CPU简直要命,之前用AS3写的代码90*90格仅6个敌人每次同时寻路都得卡上几秒,还经常找不到路,反正我目前还没想到好的优化方法。

② 如何基于cocos2dx3.x实现A星寻路算法

在学习本篇教程之前,如果你有cocos2d-x的开发经验,将会有所帮助。如果没有也没关系,因为你可以将这里讲解的例子迁移到其他的语言或者框架中。
找到到达你键盘的最短路径,开始吧!
Maze猫
首先介绍下我们将要在本篇教程中开发的简单游戏。
前往下载本篇教程的 工程代码 。编译运行工程,你将看到以下画面。

在这款游戏中,你扮演着一只小偷猫,在一个由危险的狗守护着的地牢里小心穿行。如果你试图穿过一只狗,他会把你吃掉 – 除非你可以用骨头去贿赂它!
所以在这款游戏中,你的任务是尝试以正确的顺序捡起骨头,然后 寻找路线 穿过狗逃离。
注意到猫只能水平或者垂直的移动(例如不能斜线移动),并且会从一个方块的中心点移动到另一个中心点。每个方块既可以是可通行的也可以是不可通行的。
尝试下这款游戏,看看你能否找到出路!建议你阅读代码以熟悉它的原理。这是一款相当普通的方块-地图式游戏,我们会在接下来的教程中修改它并使用上A星寻路算法。
Maze猫和A星概览
正如你所看到的,当你点击地图某处时,猫会沿着你点击的方向跳到相邻的方块上。
我们想对程序做修改,让猫持续的往你点击的方块方向前进,就像许多RPGs或者point-and-click冒险类游戏。
让我们看下控制触摸事件代码的工作原理。如果你打开HelloWorldScene.cpp文件,你将看到像下面这样去实现触摸操作:
auto listener = EventListenerTouchOneByOne::create();
listener->setSwallowTouches( true );
listener->onTouchBegan = [ this ](Touch *touch, Event *event){
if (_gameOver)
{
return false ;
}
Point touchLocation = _tileMap->convertTouchToNodeSpace(touch);
_cat->moveToward(touchLocation);
return true ;
};
_eventDispatcher->(listener, this );
你可以看到这里只是对猫精灵调用了一个方法,让猫在方块地图上往你点击的地方移动。
我们现在要做的是修改在CatSprite.m文件中的以下方法,寻找到达该点的最短路径,并且开始前进:
void CatSprite::moveToward( const Point &target)
{
}
创建ShortestPathStep类
我们开始创建一个内部类,代表路径上的一步操作。在这种情况下,它是一个方块和由A星算法计算出来的的F,G和H scores。
class ShortestPathStep : public cocos2d::Object
{
public :
ShortestPathStep();
~ShortestPathStep();
static ShortestPathStep *createWithPosition( const cocos2d::Point &pos);
bool initWithPosition( const cocos2d::Point &pos);
int getFScore() const ;
bool isEqual( const ShortestPathStep *other) const ;
std::string getDescription() const ;
CC_SYNTHESIZE(cocos2d::Point, _position, Position);
CC_SYNTHESIZE( int , _gScore, GScore);
CC_SYNTHESIZE( int , _hScore, HScore);
CC_SYNTHESIZE(ShortestPathStep*, _parent, Parent);
};
现在添加以下代码到CatSprite.cpp文件的顶部。
CatSprite::ShortestPathStep::ShortestPathStep() :
_position(Point::ZERO),
_gScore(0),
_hScore(0),
_parent(nullptr)
{
}
CatSprite::ShortestPathStep::~ShortestPathStep()
{
}
CatSprite::ShortestPathStep *CatSprite::ShortestPathStep::createWithPosition( const Point &pos)
{
ShortestPathStep *pRet = new ShortestPathStep();
if (pRet && pRet->initWithPosition(pos))
{
pRet->autorelease();
return pRet;
}
else
{
CC_SAFE_DELETE(pRet);
return nullptr;
}
}
bool CatSprite::ShortestPathStep::initWithPosition( const Point &pos)
{
bool bRet = false ;
do
{
this ->setPosition(pos);
bRet = true ;
} while (0);
return bRet;
}
int CatSprite::ShortestPathStep::getFScore() const
{
return this ->getGScore() + this ->getHScore();
}
bool CatSprite::ShortestPathStep::isEqual( const CatSprite::ShortestPathStep *other) const
{
return this ->getPosition() == other->getPosition();
}
std::string CatSprite::ShortestPathStep::getDescription() const
{
return StringUtils::format( "pos=[%.0f;%.0f] g=%d h=%d f=%d" ,
this ->getPosition().x, this ->getPosition().y,
this ->getGScore(), this ->getHScore(), this ->getFScore());
}
正如所见,这是一个很简单的类,记录了以下内容:
- 方块的坐标
- G值(记住,这是开始点到当前点的方块数量)
- H值(记住,这是当前点到目标点的方块估算数量)
- Parent是它的上一步操作
- F值,这是方块的和值(它是G+H的值)
这里定义了getDescription方法,以方便调试。创建了isEquals方法,当且仅当两个ShortestPathSteps的方块坐标相同时,它们相等(例如它们代表着相同的方块)。
创建Open和Closed列表
打开CatSprite.h文件,添加如下代码:
cocos2d::Vector _spOpenSteps;
cocos2d::Vector _spClosedSteps;
检查开始和结束点
重新实现moveToward方法,获取当前方块坐标和目标方块坐标,然后检查是否需要计算一条路径,最后测试目标方块坐标是否可行走的(在这里只有墙壁是不可行走的)。打开CatSprite.cpp文件,修改moveToward方法,为如下:
void CatSprite::moveToward( const Point &target)
{
Point fromTileCoord = _layer->tileCoordForPosition( this ->getPosition());
Point toTileCoord = _layer->tileCoordForPosition(target);
if (fromTileCoord == toTileCoord)
{
CCLOG( "You're already there! :P" );
return ;
}
if (!_layer->isValidTileCoord(toTileCoord) || _layer->isWallAtTileCoord(toTileCoord))
{
SimpleAudioEngine::getInstance()->playEffect( "hitWall.wav" );
return ;
}
CCLOG( "From: %f, %f" , fromTileCoord.x, fromTileCoord.y);
CCLOG( "To: %f, %f" , toTileCoord.x, toTileCoord.y);
}
编译运行,在地图上进行点击,如果不是点击到墙壁的话,可以在控制台看到如下信息:
From: 24.000000, 0.000000
To: 20.000000, 0.000000
其中 **From** 就是猫的方块坐标,**To**就是所点击的方块坐标。
实现A星算法
根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法:
- 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值)
- 一个方法用来计算从一个方块到相邻方块的移动数值
- 一个方法是根据"曼哈顿距离"算法,计算方块的H值
打开CatSprite.cpp文件,添加如下方法:
void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break ;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord( const Point &fromCoord, const Point &toCoord)
{
// 忽略了可能在路上的各种障碍
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::( const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因为不能斜着走,而且由于地形就是可行走和不可行走的成本都是一样的
// 如果能够对角移动,或者有沼泽、山丘等等,那么它必须是不同的
return 1;
}
接下来,需要一个方法去获取给定方块的所有相邻可行走方块。因为在这个游戏中,HelloWorld管理着地图,所以在那里添加方法。打开HelloWorldScene.cpp文件,添加如下方法:
PointArray *HelloWorld::( const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if ( this ->isValidTileCoord(p) && ! this ->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if ( this ->isValidTileCoord(p) && ! this ->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if ( this ->isValidTileCoord(p) && ! this ->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if ( this ->isValidTileCoord(p) && ! this ->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}
可以继续CatSprite.cpp中的moveToward方法了,在moveToward方法的后面,添加如下代码:
bool pathFound = false ;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加猫的方块坐标到open列表
this ->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步骤
// 因为是有序列表,第一个步骤总是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加当前步骤到closed列表
_spClosedSteps.pushBack(currentStep);
// 将它从open列表里面移除
// 需要注意的是,如果想要先从open列表里面移除,应小心对象的内存
_spOpenSteps.erase(0);
// 如果当前步骤是目标方块坐标,那么就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true ;
ShortestPathStep *tmpStep = currentStep;
CCLOG( "PATH FOUND :" );
do
{
CCLOG( "%s" , tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到没有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break ;
}
// 得到当前步骤的相邻方块坐标
PointArray *adjSteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 检查步骤是不是已经在closed列表
if ( this ->getStepIndex(_spClosedSteps, step) != -1)
{
continue ;
}
// 计算从当前步骤到此步骤的成本
int moveCost = this ->(currentStep, step);
// 检查此步骤是否已经在open列表
ssize_t index = this ->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 设置当前步骤作为上一步操作
step->setParent(currentStep);
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是从此步骤到目标方块坐标的移动量估算值
step->setHScore( this ->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this ->insertInOpenSteps(step);
}
else
{
// 获取旧的步骤,其值已经计算过
step = _spOpenSteps.at(index);
// 检查G值是否低于当前步骤到此步骤的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因为G值改变了,F值也会跟着改变
// 所以为了保持open列表有序,需要将此步骤移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 现在可以放心移除,不用担心被释放
_spOpenSteps.erase(index);
// 重新按序插入
this ->insertInOpenSteps(step);
// 现在可以释放它了,因为open列表应该持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect( "hitWall.wav" );
}
添加以下方法:
ssize_t CatSprite::getStepIndex( const cocos2d::Vector &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
编译运行,在地图上进行点击,如下图所示:

From: 24.000000, 0.000000
To: 23.000000, 3.000000
PATH FOUND :
pos=[23;3] g=10 h=0 f=10
pos=[22;3] g=9 h=1 f=10
pos=[21;3] g=8 h=2 f=10
pos=[20;3] g=7 h=3 f=10
pos=[20;2] g=6 h=4 f=10
pos=[20;1] g=5 h=5 f=10
pos=[21;1] g=4 h=4 f=8
pos=[22;1] g=3 h=3 f=6
pos=[23;1] g=2 h=2 f=4
pos=[24;1] g=1 h=3 f=4
pos=[24;0] g=0 h=0 f=0
注意该路径是从后面建立的,所以必须从下往上看猫选择了哪条路径。
跟随路径前进
现在已经找到了路径,只需让猫跟随前进即可。需要创建一个数组去存储路径,打开CatSprite.h文件,添加如下代码:
cocos2d::Vector _shortestPath;
打开CatSprite.cpp文件,更改moveToward方法,注释掉语句**bool pathFound = false**;,如下:
//bool pathFound = false;
替换语句**pathFound = true;**为如下:
//pathFound = true;
this ->(currentStep);
并且注释掉下方的调试语句:
//ShortestPathStep *tmpStep = currentStep;
//CCLOG("PATH FOUND :");
//do
//{
// CCLOG("%s", tmpStep->getDescription().c_str());
// tmpStep = tmpStep->getParent(); // 倒退
/

③ A星寻路算法和Unity自带的寻路相比有什么优势

在理解Navigation的时候,首先要明确两个知识点:

AStar:AStar是路点寻路算法中的一种,同时AStar不属于贪婪算法,贪婪算法适合动态规划,寻找局部最优解,不保证最优解。AStar是静态网格中求解最短路最有效的方法。也是耗时的算法,不宜寻路频繁的场合。一般来说适合需求精确的场合。

性能和内存占用率都还行,和启发式的搜索一样,能够根据改变网格密度、网格耗散来进行调整精确度。

A Star一般使用场景:

Navigation:网格寻路算法,严格意义上它属于”拐角点算法”,效率是比较高的,但是不保证最优解算法。Navigation相对来说消耗内存更大,性能的话还不错。

Navigation一般使用场景:

它们二者事件的实现方式和原理都不同。


AStar的话,

④ 如何在使用Cocos2D中实现A星(A*)寻路算法

实现A星算法
根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法:
- 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值)
- 一个方法用来计算从一个方块到相邻方块的移动数值
- 一个方法是根据"曼哈顿距离"算法,计算方块的H值。
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}

⑤ cocos2dx 什么是a星算法

您好,我来为您解答:
A*搜寻算法俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。
如果我的回答没能帮助您,请继续追问。

⑥ a星算法 是不是深度学习算法套路

不是的,a星算法是一个启发式搜索算法

⑦ 如果人物地图都是按格子来的,那么可以用A星算法自动寻路,如果路径跟地图都不是格子的,怎么自动寻路,手

这个不行,寻路可能要遍历到整个地图,所以定几个特殊点没法得出路径的。

⑧ lua语言a星寻路算法路径怎么平滑

在项目中遇到了自动寻路的需求,于是决定开始学习一下A星,对于A星我也没有深究,只能说是勉强搞定了需求,在这和大家分享一下,相互进步,

A星有个公式 f(x) = g(x) + h(x)
,搞清楚这个公式就好办了,f(x)就是当前位置到下一个位置的总价值,g(x)表示实际价,这是说这一部分代价是确定的,h(x)表示估价值,就是说我
从下一个位置到到终点的代价是未知的,所以叫估价值,如图中所示,黑色格子表示当前位置,绿色格子表示下一步可能到达的位置,即上、下、左、右这几个方
向,红色格子表示终点,褐色表示障碍物,现在要从黑色格子到达红色格子,那么黑色格子的下一步肯定是绿色格子当中的一个,黑色格子到绿色格子之间是相挨着
的,所以我们可以很明确的知道它的实际代价为1(移动一步的代价)即g(x),绿色格子到红色格子之间隔着很长的距离,中间还有障碍物,所以这个代价是未
知的,即h(x),所以总的代价就为f(x) = g(x) +
h(x),我们看到周围有4个绿色的格子,到底走那一步比较好呢,所以我们要把这4个格子的f(x)值都求出来,然后进行排序,选择f(x)值最小的,即
总代价最少的那个格子,以此方法继续下去,直到到达终点 或者 地图上没有绿色格子了

下面来看一下这个工具类,g(x)和h(x)要选的比较合适,一般就是采用的曼哈顿算法,即两点在x方向和y方向的距离之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 寻路

mole("PathUtil", package.seeall)

local _map_data -- 地图数据
local _open_list -- 开放节点
local _open_map -- 开放节点,为了提高性能而加
local _close_map -- 关闭节点
local _deleget -- 代理
local _dest_point -- 目标点
local _start_point -- 起点
local _path -- 路径

-- 寻找路径
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回点point1到点point2的实际代价
end
h = function(point1, point2)
-- add your code
-- 返回点point1到点point2的估算代价
end
getValue = function(j, i)
-- 返回地图中第i行,第j列的数据 1为障碍物,0为非障碍物
end
width -- 地图宽度
height -- 地图高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end

function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end

function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end

-- 得到下一个可以移动的点
-- @param point 当前所在点
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end

-- 得到路径
-- @param end_point 目标点
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end

-- 两个点的代价比较器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end

-- 是否是障碍物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end

-- 两个点是否是同一个点
function isEqual(point1, point2)
return point1.key == point2.key
end

-- 根据点得到点的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end

下面是工具类PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows

local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)

_path就是我们找到的路径,起点为最后一个元素,终点为第一个元素

⑨ 深度优先搜索和广度优先搜索,A星算法三种算法的区别和联系

在说它之前先提提状态空间搜索.状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程.通俗点说,就是 在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦).由于求解问题的过程中分枝有很多,定性,不完备性造成的,使得求解的路径很多这就构成了一个图,我们说这个图就是状态空间.问题的求解实际上就是在这个图中找到一条路径可以从开始到结果.这个寻找的过程就是状态空间搜索.

⑩ 按键精灵A星寻路插件,有用的么

完全依靠鼠标点击寻路的游戏用A新寻路才有点用,但是经常点击错误!
现在的游戏都是鼠标调整视觉,按键移动的,而且没有自动寻路功能,用到内存都经常卡点!
你觉得现在用A星算法还有什么用

阅读全文

与混合a星算法自动泊车相关的资料

热点内容
怎么把电子版投标报价加密 浏览:29
电脑安全编译器 浏览:364
在服务器里如何调创造 浏览:835
知云登录为什么找不到服务器 浏览:815
python切片位置 浏览:374
平板加密视频怎么播放 浏览:377
程序员上下班不带电脑 浏览:835
androidrsa文件 浏览:64
linuxlvds 浏览:103
程序员选择职场 浏览:345
累加C语言算法 浏览:948
足浴店用什么app招人 浏览:191
php调用thrift 浏览:191
java精度丢失 浏览:903
地梁承台相交处箍筋加密 浏览:95
程序员绘本 浏览:647
php线程安全版 浏览:407
lilolinux 浏览:111
proteus51编译工具 浏览:309
黑马程序员c语言基础函数 浏览:839