导航:首页 > 源码编译 > 衡量算法正确性标准是什么

衡量算法正确性标准是什么

发布时间:2022-06-21 01:44:16

㈠ 如何比较两个算法的好坏,有什么指标

算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;
·执行算法的时间;
·执行算法的存储空间(主要是辅助存储空间);
·算法易于理解、编码、调试。
**************************************************************************************************************
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。
算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。
时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。
空间复杂度:是某个算法的空间耗费,它是该算法所求解问题规模n的函数。
算法的时间复杂度和空间复杂度合称算法复杂度。

㈡ 一个算法的评价主要从哪些方面来考虑

一个算法的评价主要从以下几个方面来考虑:

1、时间复杂度

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。

T(n)=Ο(f(n))

因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。

2、空间复杂度

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

3、正确性

算法的正确性是评价一个算法优劣的最重要的标准。

4、可读性

算法的可读性是指一个算法可供人们阅读的容易程度。

5、健壮性

健壮性是指一个算法对不合理数据输入的反应能力和处理能力,也称为容错性。

(2)衡量算法正确性标准是什么扩展阅读:

算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

算法可以宏泛的分为三类:

一、有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。

二、有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。

三、无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。

㈢ 数据结构中评价一个好的算法,应该从哪几个方面来考虑

数据结构中评价一个好的算法,应该从四个个方面来考虑,分别是:

一、算法的正确性。

二、算法的易读性。

三、是算法的健壮性。

四、是算法的时空效率(运行)。

算法的设计取决于数据(逻辑)结构,而算法的实现依赖于采用的存储结构。数据的存储结构实质上是它的逻辑结构在计算机存储器中的实现,为了全面的反映一个数据的逻辑结构,它在存储器中的映象包括两方面内容,即数据元素之间的信息和数据元素之间的关系。

不同数据结构有其相应的若干运算。数据的运算是在数据的逻辑结构上定义的操作算法,如检索、插入、删除、更新和排序等。

(3)衡量算法正确性标准是什么扩展阅读:

分类

1、集合结构。该结构的数据元素间的关系是“属于同一个集合”。

2、线性结构。该结构的数据元素之间存在着一对一的关系。

3、树型结构。该结构的数据元素之间存在着一对多的关系。

4、图形结构。该结构的数据元素之间存在着多对多的关系,也称网状结构。

㈣ 如何评价一个算法的好坏

首先,这个算法必须是正确的
其次,好的算法应该是友好的,便于人们理解和交流,并且是机器可执行的。
这个算法还需要足够健壮,即当输入的数据非法或不合理时,也能适当的做出正确的反应或进行相应的处理
最后它还必须拥有高效率和低存储量要求。
也就是所谓的时间复杂度和空间复杂度

1.时间复杂度

定义:在计算机科学中,算法的时间复杂度是一个函数,他定量描述了该算法的运行时间.一个算法执行所耗费的时间,从理论上讲,只有你把你的程序放机器上跑起来,才能知道.然而我们有一套时间复杂度的分析方式.一个算法所花费的时间与其中语句的执行次数成正比例.算法中的基本操作的执行次数,为算法的时间复杂度.

2.时间复杂度为什么不使用时间来衡量而使用基本语句的运行次数来衡量?

算法的执行时间依赖于具体的软硬件环境,所以,不能用执行时间的长短来衡量算法的时间复杂度,而要通过基本语句执行次数的数量级来衡量。

3.时间复杂度的O渐进表示法(Big O notation)

是用于描述函数渐进行为的数学符号.

大O阶方法推导:
计算基本语句的执行次数的数量级;
只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

4.时间复杂度的:最优、平均、最差情况,为什么时间复杂度看的是最差情况?

最差情况下的复杂度是所有可能的输入数据所消耗的最大资源,如果最差情况下的复杂度符合我们的要求,我们就可以保证所有的情况下都不会有问题。

某些算法经常遇到最差情况。比如一个查找算法,经常需要查找一个不存在的值。
也许你觉得平均情况下的复杂度更吸引你,可是平均情况也有几点问题。第一,难计算,多数算法的最差情况下的复杂度要比平均情况下的容易计算的多,第二,有很多算法的平均情况和最差情况的复杂度是一样的. 第三,什么才是真正的平均情况?如果你假设所有可能的输入数据出现的概率是一样的话,也是不合理的。其实多数情况是不一样的。而且输入数据的分布函数很可能是你没法知道。
考虑最好情况的复杂度更是没有意义。

5.如何求解:二分查找、递归求阶乘、递归斐波那契的时间复杂度?

二分查找:通过折纸查找求解时间复杂度为O(logN);
递归求阶乘:数基本操作递归N次得到时间复杂度为O(N);
递归斐波那契:分析得出基本操作递归了2N次,时间复杂度为O(2N);

6.什么是空间复杂度?

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的度量.空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数.空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进法表示.

7.如何求空间复杂度? 普通函数&递归函数

一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。若一个算法为 递归算法,其空间复杂度为递归所使用的堆栈空间的大小,它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表示开始进行的一次非递归调用)。算法的空间复杂度一般也以数量级的形式给出。如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空间复杂度与n成线性比例关系时,可表示为O(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。
8. 分析递归斐波那契数列的:时间、空间复杂度,并对其进行优化,伪递归优化->循环优化

long long Fib(int N) {
if (N < 3)
return 1;
return Fib(N - 1) + Fib(N - 2);
}

普通递归实现的斐波那契数列:
时间复杂度:O(2^n)

计算并根据O渐进表示法得出时间复杂度.

空间复杂度:O(N);递归深度乘以(每一次递归的空间占用{有辅助空间或常量})

伪递归优化:

long long fib (long long first, longlong second, int N) {
if(N <3)
return 1;
if(N == 3)
return first + second;
return fib(second, first+second,N-1);
}

时间复杂度:
O(N);
递归深度乘以每次递归的循环次数
空间复杂度:
O(1)或O(N)
关键看编译器是否优化,优化则为O(1)否则O(N);

循环优化:

long long Fib(int N) {
long long first = 1;
long long second = 1;
long long ret = 0;
for (int i = 3; i <= N ; ++i) {
ret = first + second;
first = second;
second = ret;
}
return second;
}

时间复杂度:O(N);

空间复杂度:O(1);

9.常见时间复杂度

常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!) Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。

㈤ 算法的评价指标有哪些

时间复杂度和空间复杂度。

1、时间复杂度

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。

T(n)=Ο(f(n))

因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。

2、空间复杂度

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

空间复杂度记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

(5)衡量算法正确性标准是什么扩展阅读:

算法的方法:

1、递推法

递推是序列计算机中的一种常用算法。它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定项的值。其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。

2、递归法

程序调用自身的编程技巧称为递归(recursion)。一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。

一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

注意:

(1) 递归就是在过程或函数里调用自身.

(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

㈥ 衡量算法好坏的标准

1:时间复杂度:

可以简单的说就是:大概程序要被执行的次数,而非时间。注意:是次数,不是时间,因为不同机器的性能是不一样的,不要用计时器在那里计时谁的更快。当然,如果在同一台电脑上运行计时另说。
Question:怎样看待一个程序执行的速度是快还是慢?
Answer:要看他里边最关键的运行次数最多的那一个步骤到底执行了几次,用这个来衡量算法的时间复杂度

2:空间复杂度:

同样简单来说就是:算法执行过程中大概所占用的最大的内存。

3:难易程度:

所研究的算法尽可能让大家能看懂。

4:健壮性:

简单来说哦,不要一碰就完不结实

5:正确性:

一定要正确,感觉这一特性说不说都是可以,不正确也不能用,这一切的前提都是以正确为前提的。

㈦ 求问正确性也是衡量算法的标准吗

清华大学版的《数据结构》教材上是这么说的,你可以有保留意见,毕竟这不能算严格的科学问题,但是考试时是另外一回事。
我是这么理解的,并非所有的问题都能找到精确的算法,比如
有一些数值计算方面的问题,不同的算法效率和精度可能会有
差异,当要求精度很高时,可能效率高的算法就会出现问题,
正确性不能保证;另外,有很多算法,它可能会有自身的适
应范围和条件,如有一些排序算法,可能会要求不能有重复元素,
当有重复元素时,可能会出错,因此该算法在某些场合是正确
的,而在另外的场合可能不正确,这也许就是所谓的正确性吧。

㈧ 评价算法优劣的指标包括算法的什么

1、时间复杂度

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。

2、空间复杂度

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

3、正确性

算法的正确性是评价一个算法优劣的最重要的标准。

4、可读性

算法的可读性是指一个算法可供人们阅读的容易程度。

5、健壮性

健壮性是指一个算法对不合理数据输入的反应能力和处理能力,也称为容错性。

㈨ 算法的衡量标准有哪些

衡量算法的三个标准是:时间复杂度、空间复杂度和难易程度。时间复杂度可以简单的说就是:大概程序要被执行的次数,而非时间。
注意:是次数,不是时间,因为不同机器的性能是不一样的,不要用计时器在那里计时谁的更快。当然,如果在同一台电脑上运行计时另说。
空间复杂度:同样简单来说就是:算法执行过程中大概所占用的最大的内存。

㈩ 衡量算法正确性的标准通常是

在设备的设计制造中,因为种种原因,不可能完全达到设计所要达到的理想状态。比如设计时的计算、设备零件加工送的行为误差、设备组装中的操作、以及设备在运行中的磨损等等,所以,一台设备最终完成,其所达到的状态于设计时所想达到的状态之间是有一定的差异的。这种不同越少,做达到的精度就会越高,而要使这种差异缩小就要求在各个环节中的误差减少,相应的,误差越小,两种状态的差异就越小,精度就会越高。这是基于这之间的关系,通常就会用误差作为衡量精度的标准。

阅读全文

与衡量算法正确性标准是什么相关的资料

热点内容
单片机原理及应用第二版第八章答案 浏览:533
服务器一百个节点相当于什么 浏览:342
绥化电气编程培训 浏览:372
轻量应用服务器怎么添加软件上去 浏览:811
资产管理pdf 浏览:168
制冷压缩机热负荷过低 浏览:361
服务器出现两个IPV4地址 浏览:846
宜兴云存储服务器 浏览:221
如何开放远程服务器上的端口号 浏览:69
大规模单片机厂家供应 浏览:954
3dmax编辑样条线快捷命令 浏览:708
怎么获得音乐的源码 浏览:251
郭麒麟参加密室完整版 浏览:320
单片机排线怎么用 浏览:485
java字符串太长 浏览:870
python变量计算 浏览:117
网银pdf 浏览:136
iponedns服务器怎么设置复原 浏览:407
深圳电力巡检自主导航算法 浏览:438
十二星座的布娃娃怎么买app 浏览:323