导航:首页 > 源码编译 > 局面估值函数属于基因遗传算法吗

局面估值函数属于基因遗传算法吗

发布时间:2022-06-21 11:38:08

① 我编人机对战中国象棋软件,但是局面评估函数非常不合理,想求教评估函数的详细计算方法(如子力价值等)

我手里倒是有一个局面评估函数,不知道你想不想要。

② 遗传算法属于数学优化理论吗

算的
遗传算法是一种利用自然遗传规律来搜索最优解的数学优化工具。其基本过程及原理简单概括如下:

遗传算法是具有“生成+检测”迭代过程的搜索算法,是一种群体型操作。操作以群体中的所有个体为对象。它有三个基本操作算子:选择、变异和交叉。遗传算法中包含五个基本要素:参数编码;初始群体设定;适应度函数设计;遗传操作设计;控制参数设定(主要指群体大小和使用遗传操作的概率等)。这五个要素构成了遗传算法的核心内容。参数编码就是将优化问题变量通过一定的变换映射到染色体基因上面。初始群体设定应使其具有足够的规模和随机性。遗传算法根据染色体基因值来计算染色体适应度,并根据适应度值决定染色体的交配概率,适应度大的染色体交配概率大。染色体交配之后应对染色体进行变异,这样可以避免算法过早收敛。变异之后的群体就是子代,它将作为下一代群体的父代,进行同样的遗传操作,如此循环。在算法执行过程中,控制参数的设定直接影响算法的精度和效率,因此选定合适的控制参数是提高算法效率的关键之一。一般采用观察法来选定合适的控制参数

③ 遗传算法<sup>[1,]</sup>

遗传算法,又称基因算法(Genetic Algorithm,简称GA),也是一种启发式蒙特卡洛优化算法。遗传算法最早是由Holland(1975)提出,它模拟了生物适者生存、优胜劣汰的进化过程,具有不依赖于初始模型的选择、不容易陷入局部极小、在反演过程中不用计算偏导数矩阵等优点。遗传算法最早由Stoffa和Sen(1991)用于地震波的一维反演,之后在地球物理资料的非线性反演中得到广泛的应用。GA算法对模型群体进行追踪、搜索,即模型状态通过模型群体传送,具有比模拟退火法更大、更复杂的“记忆”,潜力更大。

遗传算法在反演中的基本思路和过程是:

(1)将生物体看成模型,模型参数看成染色体,有多少个模型的参数就有多少个染色体。对每个模型的参数(染色体)用二进制进行编码,这个编码就是基因。

(2)随机生成一个模型群体(相当于生物的种群),然后在模型群体中进行繁殖,通过母本的选择、交换和变异等遗传操作产生下一代,然后保留较好基因,淘汰较差基因。

(3)通过一代一代的繁殖优胜劣汰的进化过程,最后所剩下的种群基本上都是最优的基因,种群趋于一致。所谓群体“一致”,即群体目标函数的方差或标准差很小,或者群体目标函数的均值接近于极值(可能是极大值或极小值),从而获得非线性反演问题所对应的最优解或近似最优解。

下面以一个实例来简述遗传算法的基本过程。

[例1]设m是正整数,且0≤m≤127,求方程φ(m)=m2的极大值。

这个例子极为简单,只有一个模型参数,因此只有一条染色体,目标函数的极值是极大值(此例子来自阮百尧课件)。遗传算法通过以下7个步骤来实现:

(1)模型参数二进制编码。

每个模型参数就是一条染色体,把十进制的模型参数表示为二进制,这就是基因。首先确定二进制码的长度(基因的长度):

2N=[mmax(i)-mmin(i)]/Δm(i) (8.20)

其中:N为第i条染色体基因的长度(也就是第i个模型参数的二进制码位数);[mmin(i),mmax(i)]为第i个模型参数的取值范围;Δm(i)为第i个模型参数的分辨率。这样就把模型参数离散化了,它只能按Δm(i)的整数倍变化。基因的长度按下式计算:

地球物理反演教程

其中:c为实数;N为基因长度,是整数;int[ ]为取整函数。上式表示如果c不是整数,那么基因长度N就是对c取整后加1,这样保证最小分辨率。

基因的编码按下式进行:

地球物理反演教程

其中:式(8.22)是编码公式;k为基因编码的十进制数,是整数;int[ ]为取整函数。把k转化为二进制就是基因的编码。解码是按照式(8.23)进行的。首先把一个基因的二进制编码转化为十进制数k,然后按式(8.23)可以计算出第i个模型参数m(i)的十进制值。

例如:电阻率参数ρ(1),它的变化范围为10~5000Ω·m,分辨率为2Ω·m,设当前参数ρ(1)=133Ω·m,按式(8.21)计算得

c=11.28482,N=12

所以二进制基因长度为13位。

利用式(8.22)计算基因编码k的十进制数:

k=int[(133-10)/2]=61

把它转化为二进制数为:000000111101。所以ρ(1)=133 的二进制基因编码为:000000111101。

解码过程就是把二进制基因编码变为十进制数k后用式(8.23)计算:

ρ(1)=10+61×2=132(Ω·m)

注意:基因编码并不是直接把电阻率值变为二进制。此外,133这个值在基因里不会出现,因为分辨率是2,所以表示为最接近的132。

对于[例1]问题来说,选分辨率为1,0~127用二进制编码需7位。

(2)产生初始模型种群。

生物繁殖进化需要一定数量的生物体种群,因此遗传算法开始时需要一定数量的初始模型。为保证基因的多样性,随机产生大量的初始模型作为初始种群,按照上面的编码方式进行编码。个体在模型空间中应分布均匀,最好是模型空间各代表区域均有成员。初始模型群体大,有利于搜索,但太大会增加计算量。

为保证算法收敛,在初始模型群体中,有时候应增加各位都为0和都为1的成员。遗传算法就是在这个初始模型种群的基础上进行繁殖,进化求解的。

对于[例1]问题来说,模型空间是0~127个数字,这样初始种群最多具有128个个体。为了简单,随机选择4个个体作为初始种群。初始种群的编码、目标函数值见表8.1。

表8.1 初始种群编码表

(3)模型选择。

为了生成新一代模型,需要选择较优的个体进行配对。生物进化按照自然选择、优胜劣汰的准则进行。对应地,遗传算法按照一定的准则来选择母本(两个),然后进行配对繁殖下一代模型,这个选择称为模型选择。模型配对最基本的方法是随机采样,用各模型的目标函数值对所有模型目标函数的平均值的比值定义繁殖概率,即

地球物理反演教程

其中:p(mi)为繁殖概率;φ(mi)为第i个模型的目标函数;φAVG为目标函数的平均值。对于极小化问题来说,规定目标函数值高于平均值的不传代;对于极大化问题来说,反之即可。

就[例1]来说,要求目标函数取极大值,所以规定目标函数小于平均值的模型不传代,大于它的可以传代。对第一代,为了防止基因丢失,可先不舍去繁殖概率小的模型,让它与概率大的模型配对。如:本例中70与56配对,101与15配对产生子代,见表8.2。

表8.2 基因交换表

(4)基因交换。

将配对的两个亲本模型的部分染色体相互交换,其中交换点可随机选择,形成两个新的子代(见表8.2)。两个染色体遗传基因的交换过程是遗传算法的“繁殖”过程,是母本的重组过程。

为了使染色体的基因交换比较彻底,Stoffa等人提出了一个交换概率px来控制选择操作的效果。如果px的值较小,那么交换点的位置就比较靠低位,这时的交换操作基本是低位交换,交换前后模型的染色体变化不是太大。如果px的值较大,那么交换点的位置就比较靠高位,此时的交换操作可以在较大的染色体空间进行,交换前后模型数值变化可以很大。

在[例1]中:15、101和56、70作为母本通过交换繁殖出子代5、6、111、120。所选择的基因交换位置见表8.2。有下划线的,是要交换的基因位置。

(5)更新。

母本模型和子本模型如何选择保留一定数量作为新的母本,就是模型更新。不同的策略会导致不同的结果。一般而言,若产生的新一代模型较好,则选择新一代模型而淘汰上一代模型。否则,则必须根据一定的更新概率pu来选择上一代模型来取代新一代中某些较劣的模型。

经过更新以后,繁殖时对子代再进行优胜劣汰的选择。对于极大值问题,大于目标函数平均值的子代可以繁殖,小于目标函数平均值的子代不能繁殖。由于新的种群能繁殖的个体数量减小了,所以要多繁殖几次,维持种群个体的数量保持平衡。

在[例1]中,子代较好,所以完全淘汰上一代模型,完全用子代作为新的母本。选择子代目标函数最大的两个模型进行繁殖,分别是111、120。

(6)基因变异。

在新的配对好的母本中,按一定比例随机选择模型进行变异,变异操作就是模拟自然界中的环境因素,就是按比较小的变异概率pm将染色体某位或某几位的基因发生突变(即将0变为1或将1变为0)。

变异操作的作用是使原来的模型发生某些变化,从而成为新的个体。这样可使群体增加多样性。变异操作在遗传算法中也起着至关重要的作用。实际上,由于搜索空间的性质和初始模型群体的优劣,遗传算法搜索过程中往往会出现所谓的“早熟收敛”现象,即在进化过程中早期陷入局部解而中止进化。采用合适的变异策略可提高群体中个体的多样性,从而防止这种现象的出现,有助于模型跳出局部极值。表8.3为[例1]的基因变异繁殖表。

表8.3 基因变异繁殖表

在[例1]中,用111、120分别繁殖两次,形成4个子代,维持种群数量平衡。随机选择120进行变异,变异的位数也是随机的。这里把它的第2位进行变异,即从1变为0,繁殖后形成子代为:70、110、121、127。可以看出新的子代比初始种群要好得多,其中甚至已经出现了最优解。如果对于地球物理的极小值问题,我们可以预先设置一个拟合精度,只要在种群中出现一个达到拟合精度的模型就可以终止反演了。

(7)收敛。

重复(3)~(6)的步骤,模型群体经多次选择、交换、更新、变异后,种群个体数量大小不变,模型目标函数平均值趋于稳定,最后聚集在模型空间中一个小范围内,则找到了全局极值对应的解,使目标函数最大或最小的模型就是全局最优模型。

对于具有多解性的地球物理反演问题来说,通过这一步有可能找到满足拟合精度的多个模型,对于实际反演解释、推断具有较高的指导意义。

遗传算法中的各种概率包括交换概率px、变异概率pm以及更新概率pu,这些参数的选择与设定目前尚无统一的理论指导,多数都视具体问题而定。Stoffa等(1991)的研究表明,适中的交换概率(px≈0.6)、较小的变异概率(pm≈0.01)和较大的更新概率(pu≈0.9),遗传算法的性能较优。

与模拟退火反算法相同,遗传算法与传统的线性反演方法相比,该方法具有:不依赖初始模型的选择、能寻找全局最小点而不陷入局部极小、在反演过程中不用计算雅克比偏导数矩阵等优点。另外,遗传算法具有并行性,随着并行计算和集群式计算机技术的发展,该算法将会得到越来越广泛的研究与应用。

但是遗传算法作为类蒙特卡洛算法同样需要进行大量的正演计算,种群个体数量越大,繁衍代数越多,则计算量越大。所以和前面的最小二乘法相比,速度不是它的优势。

④ 基因遗传算法的主流是什么

基因遗传算法是一种灵感源于达尔文自然进化理论的启发式搜索算法 该算法反映了自然选择的过程 即最适者被选定繁殖 并产生下一代
自然选择的过程从选择群体中最适应环境的个体开始 后代继承了父母的特性 并且这些特性将添加到下一代中 如果父母具有更好的适应性 那么它们的后代将更易于存活 迭代地进行该自然选择的过程 最终 我们将得到由最适应环境的个体组成的一代
这一概念可以被应用于搜索问题中 我们考滤一个问题的诸多解决方案 并从中搜寻出最佳方案
遗传算法含以下五步
1.初始化
2.个体评价(计算适应度函数)
3.选择运算
4.交叉运算
5.变异运算
初始化
该过程从种群的一组个体开始 且每一个体都是待解决问题的一个候选解
个体以一组参数(变量)为特征 这些特征被称为基因 串联这些基因就可以组成染色体(问题的解)
在遗传算法中 单个个体的基因组以字符串的方式呈现 通常我们可以使用二进制(1和0的字符串)编码 即一个二进制串代表一条染色体串 因此可以说我们将基因串或候选解的特征编码在染色体中
个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体径争的能力)每一个体都有适应评分 个体被选中进行繁殖的可能性取决于其适应度评分 适应度函数是遗传算法进化的驱动力 也是进行自然选择的唯一标准 它的设计应结合求解问题本身的要求而定
选择运算的目的是选出适应性最好的个体 并使它们将基因传到下一代中 基于其适应度评分 我们选择多对较优个体(父母)适应度高的个体更易被选中繁殖 即将较优父母的基因传递到下一代
交叉运算是遗传算法中最重要的阶段 对每一对配对的父母 基因都存在随机选中的交叉点
变异运算
在某些形成的新后代中 它们的某些基因可能受到低概率变异因子的作用 这意味着二进制位串中的某些位可能会翻转
变异运算前后
变异运算可用于保持群内的多样性 并防止过早收敛
终止
在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止 也就是说遗传算法提供了一组问题的解

⑤ 遗传算法的基本框架

遗传算法不能直接处理问题空间的参数,必须把它们转换成遗传空间的由基因按一定结构组成的染色体或个体。这一转换操作就叫做编码,也可以称作(问题的)表示(representation)。
评估编码策略常采用以下3个规范:
a)完备性(completeness):问题空间中的所有点(候选解)都能作为GA空间中的点(染色体)表现。
b)健全性(soundness): GA空间中的染色体能对应所有问题空间中的候选解。
c)非冗余性(nonrendancy):染色体和候选解一一对应。
目前的几种常用的编码技术有二进制编码,浮点数编码,字符编码,变成编码等。
而二进制编码是目前遗传算法中最常用的编码方法。即是由二进制字符集{0,1}产生通常的0,1字符串来表示问题空间的候选解。它具有以下特点:
a)简单易行
b)符合最小字符集编码原则
c)便于用模式定理进行分析,因为模式定理就是以基础的。 进化论中的适应度,是表示某一个体对环境的适应能力,也表示该个体繁殖后代的能力。遗传算法的适应度函数也叫评价函数,是用来判断群体中的个体的优劣程度的指标,它是根据所求问题的目标函数来进行评估的。
遗传算法在搜索进化过程中一般不需要其他外部信息,仅用评估函数来评估个体或解的优劣,并作为以后遗传操作的依据。由于遗传算法中,适应度函数要比较排序并在此基础上计算选择概率,所以适应度函数的值要取正值。由此可见,在不少场合,将目标函数映射成求最大值形式且函数值非负的适应度函数是必要的。
适应度函数的设计主要满足以下条件:
a)单值、连续、非负、最大化
b) 合理、一致性
c)计算量小
d)通用性强。
在具体应用中,适应度函数的设计要结合求解问题本身的要求而定。适应度函数设计直接影响到遗传算法的性能。 遗传算法中初始群体中的个体是随机产生的。一般来讲,初始群体的设定可采取如下的策略:
a)根据问题固有知识,设法把握最优解所占空间在整个问题空间中的分布范围,然后,在此分布范围内设定初始群体。
b)先随机生成一定数目的个体,然后从中挑出最好的个体加到初始群体中。这种过程不断迭代,直到初始群体中个体数达到了预先确定的规模。

⑥ 网上经常所说的遗传算法与基因算法是一回事吗有什么不同各自的用途用在什么地方

遗传算法
GA是一种基于自然群体遗传演化机制的高效探索算法,它是美国学者Holland于1975年首先提出来的。

它摒弃了传统的搜索方式,模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作(遗传,交叉和变异),根据预定的目标适应度函数对每个个体进行评价,依据适者生存,优胜劣汰的进化规则,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。

Holland创建的遗传算法是一种概率搜索算法,它是利用某种编码技术作用于称为染色体的数串,其基本思想是模拟由这些组成的进化过程。跗算法通过有组织地然而是随机地信息交换重新组合那些适应性好的串,在每一代中,利用上一代串结构中适应好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试用新的位和段来替代原来的部分。

遗传算法是一类随机化算法,但是它不是简单的随机走动,它可以有效地利用已经有的信息处理来搜索那些有希望改善解质量的串,类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题。与自然界相似,遗传算法对待求解问题本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应度值来造反染色体,使适用性好的染色体比适应性差的染色体有更多的繁殖机会。

基因:组成染色体的单元,可以表示为一个二进制位,一个整数或一个字符等。

染色体或个体:表示待求解问题的一个可能解,由若干基因组成,是GA操作的基本对象。

群体:一定数量的个体组成了群体,表示GA的遗传搜索空间。

适应度或适度:代表一个个体所对应解的优劣,通常由某一适应度函数表示。

选择:GA的基本操作之一,即根据个体的适应度,在群体中按照一定的概论选择可以作为父本的个体,选择依据是适应度大的个体被选中的概率高。选择操作体现了适者生存,优胜劣汰的进化规则。

交叉:GA的基本操作之一,即将父本个体按照一定的概率随机地交换基因形成新的个体。

变异:GA的基本操作之一,即即按一定概率随机改变某个体的基因值。

基因算法是一种生物进化的算法,实际上是一种多目标的探索法.能够用于计划与排程.它是非常新的技术,目前,还没有在商业中实际运用.
采用生物基因技术高级算法,处理日益复杂的现实世界,也是人工智能上,高级约束算法上的挑战. 基因算法是一种搜索技术,它的目标是寻找最好的解决方案。这种搜索技术是一种优化组合,它以模仿生物进化过程为基础。基因算法的基本思想是,进化就是选择了最优种类。基因算法将应用APS上,以获得“最优”的解决方案。

⑦ 基因遗传算法主流

基因遗传算法是一种灵感源于达尔文自然进化理论的启发式搜索算法 该算法反映了自然选择的过程 即最适者被选定繁殖 并产生下一代
自然选择的过程从选择群体中最适应环境的个体开始 后代继承了父母的特性 并且这些特性将添加到下一代中 如果父母具有更好的适应性 那么它们的后代将更易于存活 迭代地进行该自然选择的过程 最终 我们将得到由最适应环境的个体组成的一代
这一概念可以被应用于搜索问题中 我们考滤一个问题的诸多解决方案 并从中搜寻出最佳方案
遗传算法含以下五步
1.初始化
2.个体评价(计算适应度函数)
3.选择运算
4.交叉运算
5.变异运算
初始化
该过程从种群的一组个体开始 且每一个体都是待解决问题的一个候选解
个体以一组参数(变量)为特征 这些特征被称为基因 串联这些基因就可以组成染色体(问题的解)
在遗传算法中 单个个体的基因组以字符串的方式呈现 通常我们可以使用二进制(1和0的字符串)编码 即一个二进制串代表一条染色体串 因此可以说我们将基因串或候选解的特征编码在染色体中
个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体径争的能力)每一个体都有适应评分 个体被选中进行繁殖的可能性取决于其适应度评分 适应度函数是遗传算法进化的驱动力 也是进行自然选择的唯一标准 它的设计应结合求解问题本身的要求而定
选择运算的目的是选出适应性最好的个体 并使它们将基因传到下一代中 基于其适应度评分 我们选择多对较优个体(父母)适应度高的个体更易被选中繁殖 即将较优父母的基因传递到下一代
交叉运算是遗传算法中最重要的阶段 对每一对配对的父母 基因都存在随机选中的交叉点
变异运算
在某些形成的新后代中 它们的某些基因可能受到低概率变异因子的作用 这意味着二进制位串中的某些位可能会翻转
变异运算前后
变异运算可用于保持群内的多样性 并防止过早收敛
终止
在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止 也就是说遗传算法提供了一组问题的解

⑧ 遗传算法的优缺点

优点:

1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。

另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。

2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。

3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。

另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。

4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。

5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。

缺点:

1、遗传算法在进行编码时容易出现不规范不准确的问题。

2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。

3、遗传算法效率通常低于其他传统的优化方法。

4、遗传算法容易出现过早收敛的问题。

(8)局面估值函数属于基因遗传算法吗扩展阅读

遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。

函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。

为了设置options,需要用到下面这个函数:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。

⑨ ] 基因遗传算法的组成部分包括什么

初始化编码#适应度函数#选择#交叉和变异

⑩ 遗传算法具体应用

1、函数优化

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。

2、组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

3、车间调度

车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。

从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。


(10)局面估值函数属于基因遗传算法吗扩展阅读:

遗传算法的缺点

1、编码不规范及编码存在表示的不准确性。

2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。

3、遗传算法通常的效率比其他传统的优化方法低。

4、遗传算法容易过早收敛。

5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。

阅读全文

与局面估值函数属于基因遗传算法吗相关的资料

热点内容
单片机原理及应用第二版第八章答案 浏览:533
服务器一百个节点相当于什么 浏览:342
绥化电气编程培训 浏览:372
轻量应用服务器怎么添加软件上去 浏览:811
资产管理pdf 浏览:168
制冷压缩机热负荷过低 浏览:361
服务器出现两个IPV4地址 浏览:846
宜兴云存储服务器 浏览:221
如何开放远程服务器上的端口号 浏览:69
大规模单片机厂家供应 浏览:954
3dmax编辑样条线快捷命令 浏览:708
怎么获得音乐的源码 浏览:251
郭麒麟参加密室完整版 浏览:320
单片机排线怎么用 浏览:485
java字符串太长 浏览:870
python变量计算 浏览:117
网银pdf 浏览:136
iponedns服务器怎么设置复原 浏览:407
深圳电力巡检自主导航算法 浏览:438
十二星座的布娃娃怎么买app 浏览:323