⑴ 图论在数学建模中一般用于哪些类型的题
1 最短路问题(SPP-shortest path problem)
一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。
2 公路连接问题
某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?
3 指派问题(assignment problem)
一家公司经理准备安排 名员工去完成 项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?
4 中国邮递员问题(CPP-chinese postman problem)
一名邮递员负责投递某个街区的邮件。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。
5 旅行商问题(TSP-traveling salesman problem)
一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。
6 运输问题(transportation problem)
某种原材料有 个产地,现在需要将原材料从产地运往 个使用这些原材料的工厂。假定 个产地的产量和 家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?
7.最短路已有成熟的算法:迪克斯特拉(Dijkstra)算法
8.计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra算法。具体方法是:每次以不同的顶点作为起点,用Dijkstra算法求出从该起点到其余顶点的最短路径,反复执行n次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。这种算法的时间复杂度为O(n^3)。第二种解决这一问题的方法是由Floyd R W提出的算法,称之为Floyd算法。(可以解决第一个问题)
9.prim算法、Kruskal算法构造最小生成树(使所有点连通)
10.匈牙利算法、Kuhn-Munkres算法解决人员分配问题
11.Euler回路的Fleury算法(中国邮递员问题)
12.最大流的一种算法—标号法(用标号法寻求网络中最大流的基本思想是寻找可增广轨,使网络的流量得到增加,直到最大为止。)
我的计算机不好,用的是MATLAB,网上很多资料可以网络到。程序好直接网络对应算法搞成C的吧……
算法很多网络能到……
⑵ 求助,论文再要翻译(图论方面的)谢谢!
Bipartite Graph and Application
Abstract:
Bipartite Graph is a special model in the Graph Theory. In the various practical applications, its ultimate resolution is the perfect matching of Bipartite Graph or more generally seeking a matching for every point in the X saturation. The Hungarian Algorithm is a method for finding the largest matching, while the Kuhn and Munkres Algorithm suggests a method of seeking the best matching in the complete weighted Bipartite Graph. This paper discusses the issue of a task arrangement, and provides a C program to realize that issue.
Key Words : Bipartite Graph, the Hungarian Algorithm, the Kuhn and Munkres Algorithm, C program
⑶ 大哥大姐们什么是图论
图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷 的同分异构物时,也发现了“树”。哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。
图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当
然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。
图与网络是运筹学(Operations Research)中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。
个人觉得在实际应用中就是找出对应问题,找出算法,之后再搞定程序。
现在经常用的算法就十来个,都有对应的算法的。
1 最短路问题(SPP-shortest path problem)
一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。
2 公路连接问题
某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?
3 指派问题(assignment problem)
一家公司经理准备安排 名员工去完成 项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?
4 中国邮递员问题(CPP-chinese postman problem)
一名邮递员负责投递某个街区的邮件。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。
5 旅行商问题(TSP-traveling salesman problem)
一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。
6 运输问题(transportation problem)
某种原材料有 个产地,现在需要将原材料从产地运往 个使用这些原材料的工厂。假定 个产地的产量和 家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?
7.最短路已有成熟的算法:迪克斯特拉(Dijkstra)算法
8.计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra算法。具体方法是:每次以不同的顶点作为起点,用Dijkstra算法求出从该起点到其余顶点的最短路径,反复执行n次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。这种算法的时间复杂度为O(n^3)。第二种解决这一问题的方法是由Floyd R W提出的算法,称之为Floyd算法。(可以解决第一个问题)
9.prim算法、Kruskal算法构造最小生成树(使所有点连通)
10.匈牙利算法、Kuhn-Munkres算法解决人员分配问题
11.Euler回路的Fleury算法(中国邮递员问题)
12.最大流的一种算法—标号法(用标号法寻求网络中最大流的基本思想是寻找可增广轨,使网络的流量得到增加,直到最大为止。)
我的计算机不好,用的是MATLAB,网上很多资料可以网络到。程序好直接网络对应算法搞成C的吧……
算法很多网络能到……
⑷ 图论算法及其MATLAB实现的图书目录
第1章 图论的基础知识1
1.1图论的起源1
1.2着名的图论学者——欧拉1
1.3图2
1.4特殊图类3
1.5有向图4
1.6图的矩阵表示5
1.6.1邻接矩阵5
1.6.2关联矩阵5
1.7图论的基本性质和定理6
1.8计算有向图的可达矩阵的算法及其MATLAB实现6
1.9关联矩阵和邻接矩阵的相互转换算法及其MATLAB实现7
习题一11
第2章 最短路12
2.1路12
2.2最短路问题13
2.3求连通图最短距离矩阵的算法及其MATLAB实现14
2.4求两点间最短路的Dijkstra算法及其MATLAB实现15
2.4.1 Dijkstra算法16
2.4.2 Dijkstra算法的MATLAB实现16
2.5求两点间最短路的改进的Dijkstra算法及其MATLAB实现18
2.5.1 Dijkstra矩阵算法Ⅰ18
2.5.2 Dijkstra矩阵算法Ⅱ18
2.6 求两点间最短路的WarshallFloyd算法及其MATLAB实现21
2.6.1 Floyd算法的基本思想22
2.6.2 Floyd算法的基本步骤22
2.6.3 WarshallFloyd算法的MATLAB实现22
2.7求任意两点间最短路的算法及其MATLAB实现25
2.8求从一固定点到其他所有点最短路的算法及其MATLAB实现27
2.9求必须通过指定两个点的最短路的算法及其MATLAB实现29
2.10求图的两顶点间最短路与次短路的算法及其MATLAB实现32
2.11求最大可靠路的算法及其MATLAB实现34
2.12求最大期望容量路的算法及其MATLAB实现36
习题二38
第3章 连通图40
3.1判断图的连通性算法及其MATLAB实现40
3.2连通图的中心和加权中心的算法及其MATLAB实现42
3.3连通无向图一般中心的算法及其MATLAB实现44
习题三46
第4章 树48
4.1树及其性质48
4.2割点、割边、割集50
4.3二元树与Huffman树51
4.3.1有序二元树51
4.3.2 Huffman树51
4.4求Huffman树及其MATLAB实现52
4.5广度优先搜索算法及其MATLAB实现55
4.6深度优先搜索算法及其MATLAB实现57
4.7求割点算法及其MATLAB实现61
4.8生成树及其个数65
4.9求无向图的生成树算法及其MATLAB实现67
4.10求有向图的生成树算法及其MATLAB实现69
4.11求有向连通图的外向树与内向树数目的算法及其MATLAB实现71
4.12最小生成树问题73
4.13求最小生成树的Kruskal算法及其MATLAB实现74
4.13.1 Kruskal算法的基本思想74
4.13.2 Kruskal算法的MATLAB实现74
4.14求最小生成树的Prim算法及其MATLAB实现76
4.14.1 Prim算法的基本思想76
4.14.2 Prim算法的MATLAB实现77
习题四79
第5章Euler图和Hamilton图81
5.1 Euler图81
5.2“一笔画”问题及其理论81
5.3中国邮递员问题82
5.4 Fleury算法及其MATLAB实现82
5.4.1 Fleury算法的步骤82
5.4.2 Fleury算法的MATLAB实现82
5.5 Hamilton图87
5.6旅行售货员问题88
5.7改良圈算法及其MATLAB实现89
习题五92
第6章 匹配问题及其算法93
6.1问题起源——婚配问题93
6.2二分图的有关知识93
6.3匹配、完美匹配、最大匹配93
6.4匹配的基本定理94
6.5应用案例——BernolliEuler错放信笺问题95
6.6寻求图的一个较大基数匹配算法及其MATLAB实现95
6.7人员分配问题97
6.8匈牙利算法及其MATLAB实现97
6.8.1匈牙利算法基本步骤97
6.8.2匈牙利算法的MATLAB实现98
6.8.3案例及其MATLAB实现100
6.9最优分配问题101
6.10 KuhnMunkres算法及其MATLAB实现101
6.10.1 KuhnMunkres算法的基本思想101
6.10.2利用可行顶点标记求最佳匹配的KuhnMunkras算法步骤102
6.10.3 KuhnMunkres算法的MATLAB实现102
6.10.4简单实验105
习题六107
第7章 网络流的算法108
7.1网络、流和割108
7.1.1网络和流108
7.1.2割109
7.2网络的最大流问题110
7.3最大流最小割定理110
7.4 FordFulkerson标号算法及其MATLAB实现111
7.4.1 FordFulkerson标号算法的基本步骤111
7.4.2 FordFulkerson 标号算法的MATLAB实现112
7.4.3案例及其MATLAB实现113
7.5 Dinic算法及其MATLAB实现114
7.5.1 Dinic算法的基本思想114
7.5.2 Dinic算法的MATLAB实现115
7.5.3案例
⑸ 图论在数学建模中一般用于哪些类型的题
1 最短路问题(SPP-shortest path problem)
一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。
2 公路连接问题
某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?
3 指派问题(assignment problem)
一家公司经理准备安排 名员工去完成 项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?
4 中国邮递员问题(CPP-chinese postman problem)
一名邮递员负责投递某个街区的邮件。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。
5 旅行商问题(TSP-traveling salesman problem)
一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。
6 运输问题(transportation problem)
某种原材料有 个产地,现在需要将原材料从产地运往 个使用这些原材料的工厂。假定 个产地的产量和 家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?
7.最短路已有成熟的算法:迪克斯特拉(Dijkstra)算法
8.计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra算法。具体方法是:每次以不同的顶点作为起点,用Dijkstra算法求出从该起点到其余顶点的最短路径,反复执行n次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。这种算法的时间复杂度为O(n^3)。第二种解决这一问题的方法是由Floyd R W提出的算法,称之为Floyd算法。(可以解决第一个问题)
9.prim算法、Kruskal算法构造最小生成树(使所有点连通)
10.匈牙利算法、Kuhn-Munkres算法解决人员分配问题
11.Euler回路的Fleury算法(中国邮递员问题)
12.最大流的一种算法—标号法(用标号法寻求网络中最大流的基本思想是寻找可增广轨,使网络的流量得到增加,直到最大为止。)
我的计算机不好,用的是MATLAB,网上很多资料可以网络到。程序好直接网络对应算法搞成C的吧……
算法很多网络能到……
⑹ 数学建模中哪些东西是放在附件中的
1最短路问题(SPP-shortestpathproblem)一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。2公路连接问题某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?3指派问题(assignmentproblem)一家公司经理准备安排名员工去完成项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?4中国邮递员问题(CPP-chinesepostmanproblem)一名邮递员负责投递某个街区的邮件。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。5旅行商问题(TSP-travelingsalesmanproblem)一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。6运输问题(transportationproblem)某种原材料有个产地,现在需要将原材料从产地运往个使用这些原材料的工厂。假定个产地的产量和家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?7.最短路已有成熟的算法:迪克斯特拉(Dijkstra)算法8.计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra算法。具体方法是:每次以不同的顶点作为起点,用Dijkstra算法求出从该起点到其余顶点的最短路径,反复执行n次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。这种算法的时间复杂度为O(n^3)。第二种解决这一问题的方法是由FloydRW提出的算法,称之为Floyd算法。(可以解决第一个问题)9.prim算法、Kruskal算法构造最小生成树(使所有点连通)10.匈牙利算法、Kuhn-Munkres算法解决人员分配问题11.Euler回路的Fleury算法(中国邮递员问题)12.最大流的一种算法—标号法(用标号法寻求网络中最大流的基本思想是寻找可增广轨,使网络的流量得到增加,直到最大为止。)我的计算机不好,用的是MATLAB,网上很多资料可以网络到。程序好直接网络对应算法搞成C的吧……算法很多网络能到……