1. 看看全球十大电信巨头的大数据玩法
看看全球十大电信巨头的大数据玩法
大数据时代,掌握海量数据无疑使自己在这竞争激烈的时代占得先机,对于电信运营商来说,更是如此。通过深度挖掘这些数据,他们正试图打造全新的商业生态圈,实现新的业绩增长点,当然也实现从电信网络运营商到信息运营商的转变。中云网的这篇文章将从全球十大电信运营商的角度分析它们是如何利用大数据的,从中或许可以给你一点启示。
对于电信运营商而言,没有哪一个时代能比肩4G时代,轻松掌握如此海量的客户数据。4G时代,手机购物、视频通话、移动音乐下载、手机游戏、手机IM、移动搜索、移动支付等移动数据业务层出不穷。它们在为用户创造了前所未有的新体验同时,也为电信运营商挖掘用户数据价值提供了大数据的视角。数据挖掘、数据共享、数据分析已经成为全球电信运营商转变商业模式,赢取深度商业洞察力的基本共识。
目前,全球120家运营商中,已经有48%的企业正在实施大数据战略。通过提高数据分析能力,他们正试图打造着全新的商业生态圈,实现从电信网络运营商(Telecom)到信息运营商(Infocom)的华丽转身。从曾经的“管道”到大数据战略融合,电信运营商到底该如何善用大数据?全球10强电信“大佬们”的大数据应用之道及其培育的新经济增长点启示颇多。
1. AT&T:位置数据货币化
AT&T是美国最大的本地和长途电话公司,创建于1877年。2009年,AT&T利用全球领先的数据分析平台、应用和服务供应商Teradata天睿公司的大数据解决方案,开始了向信息运营商的转变。
在培育新型业绩增长点的过程中,AT&T决定和星巴克开展合作,利用大数据技术收集、分析用户的位置信息,通过客户在星巴克门店附近通话或者其他通信行为,预判消费者的购物行为。为此,AT&T挑选高忠诚度客户,让其了解AT&T与星巴克之间的这项业务,并签署协议,将客户隐私的管理权交给客户自己。在获得允许情况下,AT&T将这些信息服务以一定金额交付给星巴克。星巴克通过对这些数据的挖掘,可以预估消费者登门消费的大概时间段,并且预测个人用户行为,并做出个性化的推荐。此外,在iPhone上市伊始,为了解iPhone的市场反响,AT&T还选择与Facebook结成战略联盟,通过对Facebook的非结构化数据进行分析,发现用户对价格、移动功能、服务感知等产品指标的体验情况,从而推出更加准确的电信捆绑服务。
2. NTT:创新医疗行业的社会化整合
NTT是日本最大电信服务提供商,创立于1976年。它旗下的NTTDOCOMO是日本最大的移动通讯运营商,也是全球最大的移动通讯运营商之一,拥有超过6千万的签约用户。
自2010年,NTTDOCOMO利用大数据解决方案,实现了医疗资源的社会化创新,培育了医疗信息服务增长点。面对日本社会的老龄化趋势,NTTDOCOMO想到了通过搭建信息服务平台,满足用户的个性化医疗需求。因此,NTTDOCOMO和Teradata天睿公司进行充分合作,利用其大数据解决方案,建立自己的资料库。通过开设MedicalBrain和MD+平台,聚合大量的医疗专业信息,网聚了大批医疗行业专业人士。这使用户和各种专业医疗和保健服务提供商共同拥有了符合标准的、安全可靠的生命参数采集和分发平台。在这个平台上,NTTDOCOMO能够根据用户的以往行为洞察其个性化需求,再将这些需求反馈至对应的医疗人员,帮助用户获得高价值的信息反馈。
3. Verizon:数据仓库促进精准营销
Verizon是美国最大的本地电话公司、最大的无线通信公司之一,也是全世界最大的印刷黄页和在线黄页信息提供商。它在美国、欧洲、亚洲、太平洋等全球45个国家经营电信及无线业务。
随着年轻一代用户成为电信消费主力人群,通过多媒体、社交媒体等渠道了解他们的消费行为成为Verizon的营销重点。因此,Verizon成立精准营销部门(PrecisionMarketingDivision),利用Teradata天睿公司的企业级数据仓库,对用户产生的结构化、非结构化数据进行挖掘、探索和分析。在大数据解决方案的帮助下,Verizon实现了对消费者的精准营销洞察,并且向他们提供商业数据分析服务,同时在获得允许情况下,将用户数据直接向第三方交易。此外,这些对用户购买行为的洞察也为Verizon的广告投放提供支撑,实现精准营销。凭借着获取的消费者行为的洞察力,Verizon还决定进军移动电子商务,形成自己全新的业绩增长点。
4. 德国电信:智能网络培育新增长点
德国电信是欧洲最大的电信运营商,全球第五大电信运营商。旗下T-Systems是全球领先的ICT解决方案和服务供应商。
正是T-Systems将德国电信带上了大数据的发展快车道。基于拥有全球12万平方米数据中心的优势,T-Systems提出了“智能网络”的概念。通过实时获得汽车、医疗以及能源企业的数据,T-Systems先后开发了车载互联网导航系统、交通意外自动呼叫系统以及声控电邮系统,以及能源网开发解决方案,实现电量的供需平衡。此外,它还通过设计安全的传输方式和便捷的解决方案,将医生和患者对接,提供整合的医疗解决方案。
5. Telefónica:大数据支撑用户体验优化
Telefónica创立于1924年,是西班牙的一家大型跨国电信公司,主要在西班牙本国和拉丁美洲运营,它也是全球最大的固定线路和移动电信公司之一。
Telefónica一直将用户体验视为企业发展重点。Telefónica启动一个针对移动宽带网络的端到端用户体验管理项目,并建立了一个包含60多个用户体验指标的系统,支持无线网络控制器(RNC)、域名系统(DNS)、在线计费系统(OCS)、GPRS业务支撑节点(SGSN)、探针等各种网络节点的信息采集。所有采集来的信息经过整合后存储到数据库中,为后续的用户体验测量提供数据支撑。
6. Vodafone:动态数据仓库支持商业决策
沃达丰是跨国性的移动电话运营商,现为全球最大的流动通讯网络公司之一。
Vodafone在大数据应用方面取得了丰硕成果。早在2009年,旗下SmarTone-Vodafone就委托Teradata天睿公司为其完成动态数据仓库的部署,使企业所有管理人员可以根据信息轻松制定最佳决策。它主要通过开放API,向数据挖掘公司等合作方提供部分用户匿名地理位置数据,以掌握人群出行规律,有效地与一些LBS应用服务对接。这些大数据解决方案极大提高了SmarTone-Vodafone的市场领导力。
7. 中国移动:客户投诉智能识别系统降低投诉率
中国移动通信集团公司是中国规模最大的移动通信运营商,也是全球用户规模最大的移动运营商。
在中国移动近实现客户数量迅猛增长的同时,相应也带来了客户投诉量的增长。
为了辨别客户投诉的真实原因、发现问题、改进产品、提升服务体验,中国移动和Teradata天睿公司进行了密切合作。Teradata为其配置了基于CCR模型的客户投诉智能识别系统,以投诉内容为源头,通过智能文本分析,实现了从发现问题到分析问题,再到解决问题以及跟踪评估的闭环管理。经过一段时间使用,仅中国移动某省级公司,就实现全网投诉内容的智能识别:769个投诉原因被识别,配合业务部门提出37个产品优化建议,协助优化11个产品;优化不满意点58个,消除368,295客户的潜在不满隐患,每年节约成本达540万。
8. 法国电信:数据分析改善服务水平
法国电信是法国最大的企业,也是全球第四大电信运营商,拥有全球最大的3G网络Orange。
为了优化用户体验,法国电信旗下企业Orange采用Teradata天睿公司大数据解决方案,开展了针对用户消费数据的分析评估。Orange通过分析掉话率数据,找出了超负荷运转的网络并及时进行扩容,从而有效完善了网络布局,给客户提供了更好的服务体验,获得了更多的客户以及业务增长。同时,Orange承建了一个法国高速公路数据监测项目。面对每天产生500万条记录,Orange深入挖掘和分析,为行驶于高速公路上的车辆提供准确及时的信息,有效提高道路通畅率。
9. 意大利电信:数据驱动的个性化业务
意大利电信是欧洲最大的移动运营商之一,同时也是基于单一网络提供GSM系列服务的领先欧洲运营商。
面对固网业务的下滑,意大利电信构建了面向全业务运营的客户数据仓库,以适应市场、销售、客户服务等领域的业务规则和需要。通过对客户数据的洞察,有效地预测收入状况与客户行为的关联性,推出了诸多个性化产品满足客户需求。意大利电信推出的NapsterMobile音乐业务就提供包括手机铃声、艺术家肖像墙纸以及接入NapsterMobile歌曲目录等个性化服务,直接拉动了企业业绩。
10. KDDI:数据管理服务是核心
KDDI是日本知名的电信运营商,在世界多个国家设有子公司。
通过大数据资产,提供数据管理服务是KDDI的核心业务之一。KDDI利用自身优势,以数据中心为核心,向企业提供包括云计算服务在内的信息通讯综合服务。KDDI于2000年开始在中国开展为日系及当地企业提供数据管理服务,业务发展迅猛。2012年,KDDI在北京经济技术开发区建设了当地最大规模数据中心,占地2.5万平米,试图实现2015年海外营业额为2010年2倍的目标。
以4G为代表的移动互联网时代,令信息、互联网行为数据、话单数据、WAP日志/WEB日志、互联网网页、投诉文本、短信文本等结构化数据以及非结构数据呈现几何式增长。面对新型海量数据,传统电信运营商正面临越来越大的挑战:
客户与内容服务提供商联系更加紧密,但对电信企业的忠诚度反而下降;企业无法通过流量内容服务提供商业价值,盈利能力持续下降;“管道化”严重弱化对承载信息的掌控,丧失创新产品、业务发展的基础。
电信运营商需要凭借数据分析来竞争,实现数据价值货币化。同时,利用大数据实现企业从电信网络运营商到信息运营商的转型。通过对数据的分析,了解客户流量业务的消费习惯,识别客户消费的地理位置,洞察客户接触不同信息的渠道等等,电信运营商将获得深度商业洞察力,打造基于大数据的租售数据模式、租售信息模式、数字媒体模式、数据使能模式、数据空间运营模式、大数据技术提供商等全新商业模式。
以上是小编为大家分享的关于看看全球十大电信巨头的大数据玩法的相关内容,更多信息可以关注环球青藤分享更多干货
2. 有谁知道电信行业是怎样进行大数据分析的呀
部署FineBI大数据分析工具,电信公司可以在一个管理驾驶舱中同时查看各种业务分析,竞争分析,营销监控,收益分析来获得决策支持;通过用户行为分析来提高服务质量,同时预警防范欠费和诈骗行为;通过套餐服务分析、成本分析、促销分析进行精准营销,降低成本;通过制作人力成本划小分析,人员绩效考核分析,人力成本投入及回报分析等优化内部人力资源管理。
3. 大数据挖掘常用的方法有哪些
1.基于历史的MBR分析
基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。
MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。
MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能借由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够 的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。
2.购物篮分析
购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起?商业上的应用在借由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业借由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可借由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。
购物篮分析基本运作过程包含下列三点:
1. 选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。
2. 经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。
3. 克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。
购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能借由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。
3.决策树
决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。
4.遗传算法
遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。
5.聚类分析
聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。
6.连接分析
连接分析(Link Analysis)是以数学中之图形理论(graph theory)为基础,借由记录之间的关系发展出一个模式,它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。例如电信服务业可藉连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于 企业的研究。
7.OLAP分析
严格说起来,OLAP(On-Line Analytic Processing;OLAP)分析并不算特别的一个数据挖掘技术,但是透过在线分析处理工具,使用者能更清楚的了解数据所隐藏的潜在意涵。如同一些视觉处理技术一般,透过图表或图形等方式显现,对一般人而言,感觉会更友善。这样的工具亦能辅助将数据转变成信息的目标。
8.神经网络
神经网络是以重复学习的方法,将一串例子交与学习,使其归纳出一足以区分的样式。若面对新的例证,神经网络即可根据其过去学习的成果归纳后,推导出新的结果,乃属于机器学习的一种。数据挖掘的相关问题也可采类神经学习的方式,其学习效果十分正确并可做预测功能。
9.判别分析
当所遭遇问题它的因变量为定性(categorical),而自变量(预测变量)为定量(metric)时,判别分析为一非常适当之技术,通常应用在解决分类的问题上面。若因变量由两个群体所构成,称之为双群体 —判别分析 (Two-Group Discriminant Analysis);若由多个群体构成,则称之为多元判别分析(Multiple Discriminant Analysis;MDA)。
a. 找出预测变量的线性组合,使组间变异相对于组内变异的比值为最大,而每一个线性组合与先前已经获得的线性组合均不相关。
b. 检定各组的重心是否有差异。
c. 找出哪些预测变量具有最大的区别能力。
d. 根据新受试者的预测变量数值,将该受试者指派到某一群体。
10.逻辑回归分析
当判别分析中群体不符合正态分布假设时,逻辑回归分析是一个很好的替代方法。逻辑回归分析并非预测事件(event)是否发生,而是预测该事件的机率。它将自变量与因变量的关系假定是S行的形状,当自变量很小时,机率值接近为零;当自变量值慢慢增加时,机率值沿着曲线增加,增加到一定程度时,曲线协 率开始减小,故机率值介于0与1之间。
4. 什么是大数据,看完这篇就明白了
什么是大数据
如果从字面上解释的话,大家很容易想到的可能就是大量的数据,海量的数据。这样的解释确实通俗易懂,但如果用专业知识来描述的话,就是指数据集的大小远远超过了现有普通数据库软件和工具的处理能力的数据。
大数据的特点
海量化
这里指的数据量是从TB到PB级别。在这里顺带给大家科普一下这是什么概念。
MB,全称MByte,计算机中的一种储存单位,含义是“兆字节”。
1MB可储存1024×1024=1048576字节(Byte)。
字节(Byte)是存储容量基本单位,1字节(1Byte)由8个二进制位组成。
位(bit)是计算机存储信息的最小单位,二进制的一个“0”或一个“1”叫一位。
通俗来讲,1MB约等于一张网络通用图片(非高清)的大小。
1GB=1024MB,约等于下载一部电影(非高清)的大小。
1TB=1024GB,约等于一个固态硬盘的容量大小,能存放一个不间断的监控摄像头录像(200MB/个)长达半年左右。
1PB=1024TB,容量相当大,应用于大数据存储设备,如服务器等。
1EB=1024PB,目前还没有单个存储器达到这个容量。
多样化
大数据含有的数据类型复杂,超过80%的数据是非结构化的。而数据类型又分成结构化数据,非结构化数据,半结构化数据。这里再对三种数据类型做一个分类科普。
①结构化数据
结构化的数据是指可以使用关系型数据库(例如:MySQL,Oracle,DB2)表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。所以,结构化的数据的存储和排列是很有规律的,这对查询和修改等操作很有帮助。
但是,它的扩展性不好。比如,如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的,这也容易导致后台接口从数据库取数据出错。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。
②半结构化数据
半结构化数据是结构化数据的一种形式,它并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此,它也被称为自描述的结构。半结构化数据,属于同一类实体可以有不同的属性,即使他们被组合在一起,这些属性的顺序并不重要。常见的半结构数据有XML和JSON。
③非结构化数据
非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、各类报表、图像和音频/视频信息等等。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。所以存储、检索、发布以及利用需要更加智能化的IT技术,比如海量存储、智能检索、知识挖掘、内容保护、信息的增值开发利用等。
快速化
随着物联网、电子商务、社会化网络的快速发展,全球大数据储量迅猛增长,成为大数据产业发展的基础。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB。预测未来几年,全球大数据储量规模也都会保持40%左右的增长率。在数据储量不断增长和应用驱动创新的推动下,大数据产业将会不断丰富商业模式,构建出多层多样的市场格局,具有广阔的发展空间。
核心价值
大数据的核心价值,从业务角度出发,主要有如下的3点:
a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;
b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等。
c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等。
大数据能做什么?
1、海量数据快速查询(离线)
能够在海量数据的基础上进行快速计算,这里的“快速”是与传统计算方案对比。海量数据背景下,使用传统方案计算可能需要一星期时间。使用大数据 技术计算只需要30分钟。
2.海量数据实时计算(实时)
在海量数据的背景下,对于实时生成的最新数据,需要立刻、马上传递到大数据环境,并立刻、马上进行相关业务指标的分析,并把分析完的结果立刻、马上展示给用户或者领导。
3.海量数据的存储(数据量大,单个大文件)
大数据能够存储海量数据,大数据时代数据量巨大,1TB=1024*1G 约26万首歌(一首歌4M),1PB=1024 * 1024 * 1G约2.68亿首歌(一首歌4M)
大数据能够存储单个大文件。目前市面上最大的单个硬盘大小约为10T左右。若有一个文件20T,将 无法存储。大数据可以存储单个20T文件,甚至更大。
4.数据挖掘(挖掘以前没有发现的有价值的数据)
挖掘前所未有的新的价值点。原始企业内数据无法计算出的结果,使用大数据能够计算出。
挖掘(算法)有价值的数据。在海量数据背景下,使用数据挖掘算法,挖掘有价值的指标(不使用这些算法无法算出)
大数据行业的应用?
1.常见领域
2.智慧城市
3.电信大数据
4.电商大数据
大数据行业前景(国家政策)?
2014年7月23日,国务院常务会议审议通过《企业信息公示暂行条例(草案)》
2015年6月19日,国家主席、总理同时就“大数据”发表意见:《国务院办公厅关于运用大数据加强对市场主体服务和监管的若干意见》
2015年8月31日,国务院印发《促进大数据发展行动纲要》。国发〔2015〕50号
2016年12月18日,工业和信息化部关于印发《大数据产业发展规划》
2018年1月23日。中央全面深化改革领导小组会议审议通过了《科学数据管理办法》
2018年7月1日,国务院办公厅印发《关于运用大数据加强对市场主体服务和监管的若干意见》
2019年政府工作报告中总理指出“深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”
总结
我国着名的电商之父,阿里巴巴创始人马云先生曾说过,未来10年,乃至20年,将是人工智能的时代,大数据的时代。对于现在正在学习大数据的我们来说,未来对于我们更是充满了各种机遇与挑战。
python学习网,大量的免费python视频教程,欢迎在线学习!
5. 电信行业如何应用大数据
大数据运用的四个类型
运营商运用大数据主要有四个类型。首先,在市场层面,运营商可以利用大数据对自身的产品进行服务,通过大数据分析用户行为,改进产品设计,并通过用户偏好分析,及时、准确进行业务推荐,强化客户关怀,这样就可以不断改善用户体验,增加用户的信息消费以及对运营商的粘稠度;其次,在网络层面,可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率;第三,在企业经营层面,可以通过业务、资源、财务等各类数据的综合分析,快速准确地确定公司经营管理和市场竞争策略;第四,在业务创新层面,可以在确保用户隐私不被侵犯的前提下,对数据进行深度加工,对外提供信息服务,为企业创造新的价值。这样,大数据将助力运营商实现从网络服务提供商,向信息服务提供商的转变。
由于大数据产业具有强烈互联网特征,现有的运营模式很难帮助运营商实现大数据产业的迅速发展,这是因为,对于大数据产业,运营商传统的金字塔式的组织结构已经过时,传统架构的信息系统及组织架构已无法应对海量数据和创新型应用,那种由上而下的运营模式无法更接近用户的需求,显然已经阻碍运营商自身大数据产业的纵深发展。根据市场需求,运营商必须全面转向以客户和消费者为中心的运营体系,重新梳理企业的经营模式和组织架构,这就是模式的创新,大数据产业发展要求运营商实现管理经营和市场信息系统完美对接,新型大数据应用必将助力运营商向信息服务模式转型。
面向大数据时代,运营商的及时转型成为必然,否则将有被互联网企业超越的可能性。理论上讲,运营商拥有颇具优势的大数据资源并不是完全不可替代,例如,用户的位置信息就可以通过多种APP应用获得,用户的网络使用信息也可以通过多家互联网企业合作获取,互联网企业通过泛互联网化收集更多的大数据信息。另一方面,多行业的垂直整合将成为趋势,在数据应用层面,行业企业通过多种手段搜集大量的用户数据,将更贴近用户,更理解用户,为其提供更适当的服务,大数据将成为资产更具有战略意义,各个行业及单位都在关注大数据。
根据大数据数量大、时效性要求高、数据种类及来源多样化等特征,运营商首先获取更多有用的大数据资源,例如,很多的网络运行信息,包含大量有价值的用户行为和位置信息,这样的信息可以加以利用。有了资源应该加以利用,避免大数据资源的浪费。事实上,一些运营商拥有大数据这样的金山,却似乎无奈坐看并逐渐沦为管道,在不断强化传统市场的效益考核,却好像在忽视大数据价值的流失。
直面数据分析挑战
当然,海量数据的出现、数据结构的改变,也给运营商的大数据管理及分析带来了挑战,一是由于多种业务的发展、市场需求的变化和网络规模的扩大使得运营商大数据迅速的增加,这增加了运营商大数据存储和处理的难度,使得现有数据仓库无法线性扩容,这表明传统的数据仓库无法有效存储日益增长的业务数据;二是由于新型大数据服务不同于传统通信业务分析特点,需要对内容等非结构化、大容量信息进行多用户、多应用、实时有效的分析,传统的架构和数据仓库处理已不能满足新的信息服务需求。因此,运营商需要建立新型大数据中心,来存储、分析和处理海量数据,必要的投入是必不可少的。
大数据产业出现和发展是现代信息技术与互联网时代海量信息的发展到一定阶段的必然结果,大数据应用将是海量数据、现代信息技术与各种社会应用的一次化学反应,必将对当今社会的信息技术、商业模式和相关的法律法规产生深刻的变革。
6. 大数据技术有哪些
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。
7. 大数据挖掘的算法有哪些
大数据挖掘的算法:
1.朴素贝叶斯,超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. Logistic回归,LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型。如果你想要一些概率信息或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
3.决策树,DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题,DT的主要缺点是容易过拟合,这也正是随机森林等集成学习算法被提出来的原因。
4.支持向量机,很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。
如果想要或许更多更详细的讯息,建议您去参加CDA数据分析课程。大数据分析师现在有专业的国际认证证书了,CDA,即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。点击预约免费试听课。
8. 大数据体现在哪些方面
1、疫情期间的大数据
就比如疫情期间我们所用的健康码,其实也就是基于大数据,采集每位用户的行动轨迹,然后自动生成绿码或者红码。又比如说,在疫情爆发时,浙江通过使用交通流大数据技术,排查分析从疫情严重地区驶入的车辆,帮助提高疫情防控效率。另外,大数据也被广泛应用到语音智能识别、智慧城市和信息安全、医疗、交通等方方面面。
2、业务流程优化
大数据还会更多的帮助业务流程的优化。我们可以通过利用社交媒体数据、网络搜索以及天气预报等等去挖掘出大量的有价值的数据,其中大数据的应用最广泛的就是供应链以及配送路线的优化。从这两个方面,地理定位和无线电频率的识别追踪货物和送货车,利用实时交通路线数据制定更加优化的路线。
3、更了解用户需求
大数据的应用目前在这领域是最广为人知的。重点是如何应用大数据更好的了解客户以及他们的爱好和行为。企业非常喜欢搜集社交方面的数据、浏览器的日志、分析出文本和传感器的数据,为了更加全面的了解客户。在一般情况下,建立出数据模型进行预测。举一个比较简单的例子就是通过大数据的应用,电信公司可以更好预测出流失的客户,沃尔玛则会更加精准的预测哪个产品会大卖,汽车保险行业会了解客户的需求和驾驶水平,政府也能了解到选民的偏好。
4、提高医疗和研发
大数据分析应用的计算能力可以让我们能够在几分钟内就可以解码整个DNA。并且让我们可以制定出最新的治疗方案。同时可以更好的去理解和预测疾病。就好像人们戴上智能手表等可以产生的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据技术目前已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和分析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测。这样可以帮助医生更好的救助婴儿。
5、金融交易
大数据在金融行业主要是应用金融交易。高频交易(HFT)是大数据应用比较多的领域。其中大数据算法应用于交易决定。现在很多股权的交易都是利用大数据算法进行,这些算法现在越来越多的考虑了社交媒体和网站新闻来决定在未来几秒内是买出还是卖出。
6、改善安全和执法
大数据现在已经广泛应用到安全执法的过程当中。想必大家都知道美国安全局利用大数据进行恐怖主义打击,甚至监控人们的日常生活。而企业则应用大数据技术进行防御网络攻击。警察应用大数据工具进行捕捉罪犯,信用卡公司应用大数据工具来槛车欺诈性交易。
9. 大数据变现,电信运营商只需往前迈一步
大数据变现,电信运营商只需往前迈一步
经过多年的技术积累和市场培育,大数据已经从“炒作”走向落地。全球主流的电信运营商普遍认识到大数据所蕴藏的高价值,开始积极探索如何将手中掌握的大量数据资源变现。目前,电信运营商的大数据探索主要集中在如何利用大数据分析用户行为、优化网络质量和推动业务创新等方面。数据堂创始人、CEO齐红威在接受《人民邮电》报记者采访时指出,这些对于大数据的内部利用,往往需要对原有系统进行大规模改造,而且无法直接快速地带来收入的增长,其实电信运营商可以用另一种思路,在基本不改造现有系统的情况下,立竿见影地获得可观的收益。
国务院为大数据发展“定调”
齐红威具有十多年的数据挖掘研发应用经验,曾任NEC中国研究院研发部部长、高级研究员。“大数据的本质特征并不是‘规模大’”,他阐述了对于大数据的理解。
现在人们对于大数据的认识普遍存在着误区,认为当数据量达到一定量(TB级或PB级)就是大数据,其实不然,区分大数据与海量数据的标准并不取决于其数据量,从技术上讲,“非结构化”数据才是大数据最典型的特征。现实生活中80%的数据都是非结构化的,解读这些数据,蕴藏着巨大的商业价值,这才是大数据。从商业模式上讲,大数据就是移动互联网产生的大量的关于人的数据。
近日,国务院总理李克强主持召开国务院常务会议,讨论并通过了《关于促进大数据发展的行动纲要》,对消除信息孤岛、支持大数据产业发展、强化信息安全等提出了明确要求。
齐红威认为,这是一个极大的利好消息。“大数据作为全球发展的战略资源,未来将像石油一样,影响到世界格局。对于中国而言,大数据是国家战略转型升级的基础,依靠数据和互联网相结合的方式,减少中间环节,提升传统行业运作效率。以前,一些地方政府或者企业虽然都认识到大数据的价值,但对于发展大数据仍心存顾虑:能不能做?做到什么程度?‘红线’在哪里?《纲要》的推出相当于政府给大数据发展定了调——不仅要做,而且要做大做强。”
大数据变现的闭环已经形成
2014年是大数据的商用元年,许多行业开始利用大数据真正地产生价值,齐红威认为:“现在很像电商井喷式发展前的2006年、2007年,市场培育已经完成,生态圈初具规模,商业模式逐渐成熟。价值万亿的大数据市场的大门已经打开。”
齐红威将大数据生态圈划分为云计算服务商、数据提供商、数据服务商和数据应用商四部分,实现从”数据流“到”资金流“分享共赢的商业运作模式。
其中,云计算服务商主要负责提供计算、存储和带宽等基础能力。
数据服务商则提供各种数据,包括政府大数据(公安、交通等)、行业大数据(电信、金融、电力等)、互联网大数据(互联网企业的用户数据、互联网公共数据)以及线下大数据等。
“现在网络上随时都在产生海量的数据,但线下的许多资源都还没有被数据化,这些数据同样价值连城。”他透露,数据堂独家推出了一款名为“众客堂”的众包平台,普通用户可以通过该应用上传照片、录音等提供线下的数据并获得一定的酬劳,目前“众客堂”的众客数量在全球范围内已超过40万。这些线下数据已经开始产生价值,例如,自拍照帮助美颜相机优化美颜程序;大量的购物小票分析出商品的价格走势和促销信息;语音数据帮助语音交互系统提高识别准确度等。
数据应用商则利用经过初步处理的大数据开发各类应用,例如征信、个性化旅游和交通服务等。他认为,“数据应用商将‘百花齐放’,规模有望达到数万家。”
数据服务商是大数据变现闭环形成的关键,具有三大功能:第一,连接数据提供商和应用商的纽带,免去了双方一一洽谈的麻烦;第二,汇总大数据的平台,将各领域数据提供商的大数据整合、融合起来,将产生1+1大于2的价值,实现数据增值;第三,对大数据进行初步分析、过滤和分类,“数据服务商从提供商那儿收来的是‘小麦’,但应用商需要的是‘面粉’,所以服务商就要完成把‘小麦’加工成‘面粉’的工作。”
“简单地说,数据服务商就相当于‘数据银行’,接收各方的‘存款’,再将这些‘资金’包装成不同的产品后贷款给有需要的人,搭建数据共享的‘生命线’,达成商业共赢,实现大数据变现的闭环。”齐红威表示。
数据堂是国内首家也是唯一一家在新三板上市的大数据服务商,团队的主创人员都有着十多年在大数据领域的技术积累,并在大数据产业发展过程中有着先发优势,经过多年的数据源积累,已获得金融征信、交通地理、人工智能、商家货价等多领域的大数据,与国内外多家数据提供商和应用商建立了合作关系,摸索出一套适应我国国情的商业模式。
电信运营商如何从“数据银行”提现
“电信运营商坐拥着一大片未被开发的‘油田’。”齐红威认为,电信运营商拥有着海量的高价值数据,例如掌握着用户的各类地理位置信息、商业活动、搜索历史和社交网络信息等大数据,具有维度丰富、群体性强、连续性好、网络行为全覆盖和关联性强等独特优势,“关键是如何将这些大数据变现,实现数据价值。”
齐红威逐一分析并回应了目前电信运营商在发展大数据时普遍存在的几点顾虑:
一是“能不能做”的问题。现在国家已经明确表示要大力支持大数据发展,在政策方面为电信运营商发展大数据铺平了道路。
二是“投入与收益”问题。与数据服务商合作,电信运营商几乎不需要改造现有系统就可以通过大数据获利,预计产生的价值有望达到亿万元级别。
三是“竞争”问题。数据服务商只生产“面粉”不生产“面包”,不会与电信运营商形成业务竞争。
四是“数据安全”问题。数据堂独创了一种模式——不“取走”数据提供商的数据,只是将软件嵌入到数据提供商的系统中,最终只生成数据结果,经数据提供商审核后再将相关结果提供给数据应用商,这就有效地消除了可能出现的信息泄漏风险。
齐红威表示,阻碍电信运营商挖掘大数据价值的障碍已经被一一清除,他们只需“向前迈一步”,即可拥抱蕴藏着无限商机的大数据时代。
“如果说大数据的发展是一场数万米的马拉松比赛的话,那么现在才刚刚跑了1000多米。”但齐红威同时指出,大数据发展已进入高速发展期,2015年将是各方布局大数据的关键时期,未来两三年将初步奠定大数据市场的格局,大数据将迎来超过十年的上升期。
以上是小编为大家分享的关于大数据变现,电信运营商只需往前迈一步的相关内容,更多信息可以关注环球青藤分享更多干货