导航:首页 > 源码编译 > 并行机器学习算法

并行机器学习算法

发布时间:2022-06-23 09:33:02

Ⅰ 机器学习中需要掌握的算法有哪些

在学习机器学习中,我们需要掌握很多算法,通过这些算法我们能够更快捷地利用机器学习解决更多的问题,让人工智能实现更多的功能,从而让人工智能变得更智能。因此,本文为大家介绍一下机器学习中需要掌握的算法,希望这篇文章能够帮助大家更深入地理解机器学习。
首先我们为大家介绍的是支持向量机学习算法。其实支持向量机算法简称SVM,一般来说,支持向量机算法是用于分类或回归问题的监督机器学习算法。SVM从数据集学习,这样SVM就可以对任何新数据进行分类。此外,它的工作原理是通过查找将数据分类到不同的类中。我们用它来将训练数据集分成几类。而且,有许多这样的线性超平面,SVM试图最大化各种类之间的距离,这被称为边际最大化。而支持向量机算法那分为两类,第一就是线性SVM。在线性SVM中,训练数据必须通过超平面分离分类器。第二就是非线性SVM,在非线性SVM中,不可能使用超平面分离训练数据。
然后我们给大家介绍一下Apriori机器学习算法,需要告诉大家的是,这是一种无监督的机器学习算法。我们用来从给定的数据集生成关联规则。关联规则意味着如果发生项目A,则项目B也以一定概率发生,生成的大多数关联规则都是IF_THEN格式。Apriori机器学习算法工作的基本原理就是如果项目集频繁出现,则项目集的所有子集也经常出现。
接着我们给大家介绍一下决策树机器学习算法。其实决策树是图形表示,它利用分支方法来举例说明决策的所有可能结果。在决策树中,内部节点表示对属性的测试。因为树的每个分支代表测试的结果,并且叶节点表示特定的类标签,即在计算所有属性后做出的决定。此外,我们必须通过从根节点到叶节点的路径来表示分类。
而随机森林机器学习算法也是一个重要的算法,它是首选的机器学习算法。我们使用套袋方法创建一堆具有随机数据子集的决策树。我们必须在数据集的随机样本上多次训练模型,因为我们需要从随机森林算法中获得良好的预测性能。此外,在这种集成学习方法中,我们必须组合所有决策树的输出,做出最后的预测。此外,我们通过轮询每个决策树的结果来推导出最终预测。
在这篇文章中我们给大家介绍了关于机器学习的算法,具体包括随机森林机器学习算法、决策树算法、apriori算法、支持向量机算法。相信大家看了这篇文章以后对机器学习有个更全面的认识,最后祝愿大家都学有所成、学成归来。

Ⅱ 机器学习算法中GBDT和XGBOOST的区别有哪些

机器学习算法中GBDT和XGBOOST的区别有哪些?

在昨天阿里的面试中被问到了,我只简单的说了下xgboost能自动利用cpu的多线程,而且适当改进了gradient boosting,加了剪枝,控制了模型的复杂程度

添加评论

分享

默认排序按时间排序

9 个回答

weponML/DM,https://github.com/wepe

252人赞同

xgboost相比传统gbdt有何不同?xgboost为什么快?xgboost如何支持并行?

看了陈天奇大神的文章和slides,略抒己见,没有面面俱到,不恰当的地方欢迎讨论:

传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。

传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。

xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。

Shrinkage(缩减),相当于学习速率(xgboost中的eta)。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(补充:传统GBDT的实现也有学习速率)

列抽样(column subsampling)。xgboost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。


对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。

xgboost工具支持并行。boosting不是一种串行的结构吗?怎么并行的?注意xgboost的并行不是tree粒度的并行,xgboost也是一次迭代完才能进行下一次迭代的(第t次迭代的代价函数里包含了前面t-1次迭代的预测值)。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。


可并行的近似直方图算法。树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。


=============

回复@肖岩在评论里的问题,因为有些公式放正文比较好。评论里讨论的问题的大意是 “xgboost代价函数里加入正则项,是否优于cart的剪枝”。其实陈天奇大神的slides里面也是有提到的,我当一下搬运工。
决策树的学习过程就是为了找出最优的决策树,然而从函数空间里所有的决策树中找出最优的决策树是NP-C问题,所以常采用启发式(Heuristic)的方法,如CART里面的优化GINI指数、剪枝、控制树的深度。这些启发式方法的背后往往隐含了一个目标函数,这也是大部分人经常忽视掉的。xgboost的目标函数如下:

这个公式形式上跟ID3算法(采用entropy计算增益) 、CART算法(采用gini指数计算增益) 是一致的,都是用分裂后的某种值 减去 分裂前的某种值,从而得到增益。为了限制树的生长,我们可以加入阈值,当增益大于阈值时才让节点分裂,上式中的gamma即阈值,它是正则项里叶子节点数T的系数,所以xgboost在优化目标函数的同时相当于做了预剪枝。另外,上式中还有一个系数lambda,是正则项里leaf score的L2模平方的系数,对leaf score做了平滑,也起到了防止过拟合的作用,这个是传统GBDT里不具备的特性。

Ⅲ 有没有必要把机器学习算法自己实现一遍

1对算法细节的理解更加深刻了。书中毕竟不会给出所有细节,而且书本身可能就是错的。我几乎是把所有公式重新推了一边,重新把这本书写了一遍,自己存下的note里面公式数量绝对远远多于书本身,期间也发现了书中无数的错误,这些错误在初读的时候根本意识不到。这样一遍下来,一个side effect就是让我变得愤青了,看什么paper都觉得烂。因为读paper的时候,你会发现,很多paper违背基本常识,即使影响力非常大的一些paper里也有这样那样的错误。
2可以了解很多看书学不到的各种trick。所有算法几乎都有坑。比如hyper-parameter什么意义怎么设,怎么初始化,numerical stability的怎么保证,如何保证矩阵正定,计算机rounding error的影响,numerical underflow和overflow问题等等。
3对整个领域各个算法的关联有更深刻的了解,思维形成一个关系网。看到一个算法就会自然的去想跟其他算法的联系,怎么去扩展。如果一篇paper我不能把它纳入到这个关系网里,我就觉得自己没懂。要么推出联系,要么推出矛盾证明这篇paper垃圾。另一个side effect就是我看paper从来不根据实验好坏判断优劣。虽然自己动手实现算法有好处,但是性价比几何还是个见仁见智的问题,毕竟这是一个很费时的过程。我并不认为一定有必要自己实现书上所有算法,毕竟每个人所能关注的领域还是有限的,懂得算法大致原理,具体用的时候在细研究就可以。很多算法我也是写完了从来没用过。几年过去后,我在回头看自己的代码也很难看的懂,细节还得看公式。但是对于自己的研究领域我建议还是有必要把经典算法动手实现一遍加深理解。

Ⅳ 机器学习有哪些算法

1. 线性回归
在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。
2. Logistic 回归
Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。
3. 线性判别分析
Logistic 回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是首选的线性分类技术。
4.分类和回归树
决策树是一类重要的机器学习预测建模算法。
5. 朴素贝叶斯
朴素贝叶斯是一种简单而强大的预测建模算法。
6. K 最近邻算法
K 最近邻(KNN)算法是非常简单而有效的。KNN 的模型表示就是整个训练数据集。
7. 学习向量量化
KNN 算法的一个缺点是,你需要处理整个训练数据集。
8. 支持向量机
支持向量机(SVM)可能是目前最流行、被讨论地最多的机器学习算法之一。
9. 袋装法和随机森林
随机森林是最流行也最强大的机器学习算法之一,它是一种集成机器学习算法。

想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。点击预约免费试听课。

阅读全文

与并行机器学习算法相关的资料

热点内容
葛优瘫最佳解压方式 浏览:666
影院服务器序列号怎么看 浏览:126
g300s怎么编程 浏览:768
我的世界手机版命令方块指令力量 浏览:739
辽宁小学生编程班 浏览:122
androidjni入门 浏览:616
三菱数控车床怎样编程 浏览:785
把一个文件解压到目录下 浏览:154
程序员学唱歌 浏览:703
社区看病的下的什么app 浏览:469
女生爱命令 浏览:650
安卓为什么没有广告 浏览:892
服务器2m是什么意思 浏览:995
什么app可以玩数字货币 浏览:835
linux常用命令root 浏览:353
什么是io编程 浏览:891
江恩pdf 浏览:914
程序员为什么越来越喜欢用笔记 浏览:998
c盘uu文件夹能删掉吗 浏览:590
小金龙app有什么用 浏览:813