是的,
最着名的保密密钥或对称密钥加密算法DES(Data Encryption Standard)是由IBM公司在70年代发展起来的,并经过政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(American National Standard Institute, ANSI) 承认。
DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的“每轮”密钥值由56位的完整密钥得出来。DES用软件进行解码需要用很长时间,而用硬件解码速度非常快,但幸运的是当时大多数黑客并没有足够的设备制造出这种硬件设备。在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。所以,当时DES被认为是一种十分强壮的加密方法。
但是,当今的计算机速度越来越快了,制造一台这样特殊的机器的花费已经降到了十万美元左右,所以用它来保护十亿美元的银行间线缆时,就会仔细考虑了。另一个方面,如果只用它来保护一台服务器,那么DES确实是一种好的办法,因为黑客绝不会仅仅为入侵一个服务器而花那么多的钱破解DES密文。由于现在已经能用二十万美圆制造一台破译DES的特殊的计算机,所以现在再对要求“强壮”加密的场合已经不再适用了。
三重DES
因为确定一种新的加密法是否真的安全是极为困难的,而且DES的唯一密码学缺点,就是密钥长度相对比较短,所以人们并没有放弃使用DES,而是想出了一个解决其长度问题的方法,即采用三重DES。这种方法用两个密钥对明文进行三次加密,假设两个密钥是K1和K2,其算法的步骤如图5.9所示:
1. 用密钥K1进行DEA加密。
2. 用K2对步骤1的结果进行DES解密。
3. 用步骤2的结果使用密钥K1进行DES加密。
这种方法的缺点,是要花费原来三倍时间,从另一方面来看,三重DES的112位密钥长度是很“强壮”的加密方式了
B. DES算法的设计目的
DES算法的设计目的密码体制中的对称密码体制。
这意味着如果一台计算机的速度是每一秒钟检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的时间,可见,这是难以实现的。
这并不等于说DES是不可破解的。而实际上,随着硬件技术和Internet的发展,其破解的可能性越来越大,而且,所需要的时间越来越少。使用经过特殊设计的硬件并行处理要几个小时。
DES与3DES:
DES向AES过渡的加密算法,它使用3条56位的密钥对数据进行三次加密。是DES的一个更安全的变形。它以DES为基本模块,通过组合分组方法设计出分组加密算法。比起最初的DES,3DES更为安全。
该方法使用两个密钥,执行三次DES算法,加密的过程是加密-解密-加密,解密的过程是解密-加密-解密。
C. DES加密算法是什么时候产生的是公开的算法吗三重DES算法又是如何产生的,是否是公开的
是公开的,三重DES就是算三次,嗯
D. 关于DES加密算法
数据加密算法
数据加密算法DES
数据加密算法(Data Encryption Algorithm,DEA)的数据加密标准(Data Encryption Standard,DES)是规范的描述,它出自 IBM 的研究工作,并在 1997 年被美国政府正式采纳。它很可能是使用最广泛的秘钥系统,特别是在保护金融数据的安全中,最初开发的 DES 是嵌入硬 件中的。通常,自动取款机(Automated Teller Machine,ATM)都使用 DES。
DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环。
攻击 DES 的主要形式被称为蛮力的或彻底密钥搜索,即重复尝试各种密钥直到有一个符合为止。如果 DES 使用 56 位的密钥,则可能的密钥数量是 2 的 56 次方个。随着计算机系统能力的不断发展,DES 的安全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过 ,DES 现在仅用于旧系统的鉴定,而更多地选择新的加密标准 — 高级加密标准(Advanced Encryption Standard,AES)。
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
IBM 曾对 DES 拥有几年的专利权,但是在 1983 年已到期,并且处于公有范围中,允许在特定条件下可以免除专利使用费而使用。
E. 简述DES算法和RSA算法的基本思想
DES算法全称为Data Encryption Standard,即数据加密算法,它是IBM公司于1975年研究成功并公开发表的。DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。
DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其算法主要分为两步:
1�初始置换
其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长3 2位,其置换规则为将输入的第58位换到第一位,第50位换到第2位……依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位,例:设置换前的输入值为D1D2D3……D64,则经过初始置换后的结果为:L0=D58D50……D8;R0=D57D49……D7。
2�逆置换
经过16次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,逆置换正好是初始置换的逆运算,由此即得到密文输出。
RSA算法简介
这种算法1978年就出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。
RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数( 大于 100个十进制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积。
密钥对的产生。选择两个大素数,p 和q 。计算:
n = p * q
然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互质。最后,利用Euclid 算法计算解密密钥d, 满足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )
其中n和d也要互质。数e和n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。
加密信息 m(二进制表示)时,首先把m分成等长数据块 m1 ,m2,..., mi ,块长s,其中 2^s <= n, s 尽可能的大。对应的密文是:
ci = mi^e ( mod n ) ( a )
解密时作如下计算:
mi = ci^d ( mod n ) ( b )
RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )式验证。具体操作时考虑到安全性和 m信息量较大等因素,一般是先作 HASH 运算。
RSA 的安全性。
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解140多个十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。
RSA的速度。
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
RSA的选择密文攻击。
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash Function对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。
RSA的公共模数攻击。
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA的小指数攻击。 有一种提高RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。 RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。
F. 国际数据加密算法的介绍
国际数据加密算法(IDEA)是上海交通大学教授来学嘉与瑞士学者James Massey联合提出的。它在1990年正式公布并在以后得到增强。这种算法是在DES算法的基础上发展出来的,类似于三重DES。发展IDEA也是因为感到DES具有密钥太短等缺点。IDEA的密钥为128位,这么长的密钥在今后若干年内应该是安全的。
G. “DES”的名词解释
DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法。
1977年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),并授权在非密级政府通信中使用,随后该算法在国际上广泛流传开来。需要注意的是,在某些文献中,作为算法的DES称为数据加密算法,已与作为标准的DES区分开来。
DES设计中使用了分组密码设计的两个原则:混淆和扩散,其目的是抗击敌手对密码系统的统计分析。混淆是使密文的统计特性与密钥的取值之间的关系尽可能复杂化,以使密钥和明文以及密文之间的依赖性对密码分析者来说是无法利用的。
(7)des算法的发展扩展阅读
DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的“每轮”密钥值由56位的完整密钥得出来。DES用软件进行解码需要用很长时间,而用硬件解码速度非常快。
在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。所以,当时DES被认为是一种十分强壮的加密方法。
随着攻击技术的发展,DES本身又有发展,如衍生出可抗差分分析攻击的变形DES以及密钥长度为128比特的三重DES等。