⑴ 裂项裂和裂差的计算方法
1.分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算.
2.分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
⑵ 什么是裂项分解法
裂项分解法:
分解与组合思想在数列求和中的具体应用。
是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。
裂项分解法求和:
1、1/[n(n+1)]=(1/n)- [1/(n+1)]
2、1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
3、1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
4、1/(√a+√b)=[1/(a-b)](√a-√b)
5、 n·n!=(n+1)!-n!

(2)裂项拆分计算法扩展阅读:
裂项法的原理:
通过观察可知2-1=1,3-2=1,4-3=1……即分母所拆成的2个因数差与分子相同,因此分数可整理成如下的过程
1/1×2=(2-1)/1×2=2/1×2-1/1×2=1-1/2,
1/2×3=(3-2)/2×3=3/2×3-2/2×3=1/2-1/3,
1/3×4=(4-3)/3×4=4/3×4-3/3×4=1/3-1/4,……
同分母分数相减,分母不变分子相减,把过程反过来就是上面的推理,然后再约分即可。
因此我们可以总结一下,对于任意的一个分数b/n(n+a)=b/a×【1/n-1/(n+a)】
⑶ 分母裂项拆分万能公式
分母裂项拆分万能公式是:
1、1/[n(n+1)]=(1/n)-[1/(n+1)];
2、1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)];
3、1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}。
裂项法是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。通项分解(裂项)倍数的关系。通常用于代数,分数,有时候也用于整数。
此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
⑷ 裂项法是什么
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。
【中文名】:裂项法
【内 容】:将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的
【公式1】:1/[n(n+1)]=(1/n)- [1/(n+1)]
【公式2】:1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
⑸ 什么是裂项法
就是把一个式子变成多个,以便于计算的方法。
小学阶段常见的就是用裂项加消元计算分式的和。
如
1+1/1*2+1/2*3+1/3*4+...+1/99*100
=1+(1-1/2)+(1/2-1/3)+...+(1/99-1/100) (裂项)
=1+1-1/2+1/2-1/3+...-1/99+1/99-1/100 (消元)
=2-1/100
=199/100
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。
26. 在等差数列 中:
(1)若项数为 ,则
(2)若数为 则, ,
27. 在等比数列 中:
(1) 若项数为 ,则
(2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
⑹ 裂项求和法是啥
裂项法,这是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。
裂项法求和
(1)1/[n(n+1)]=(1/n)- [1/(n+1)]

分母三个数相乘的裂项公式
(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]
(7)1/[√n+√(n+1)]=√(n+1)-√n
(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
⑺ 裂项法怎么用
第一个是列项相消,利用公式:1/[(2n-1)(2n+1)=(1/2)*{1/(2n-1)-1/(2n+1)}
所以原式=0.5*{1-1/(2n+1)}=n/(2n+1)
列项相消就是把原来式子里的每部分拆开,使前一项中的某一项能够和后一项中的某一项相抵消,从而得到最后的计算结果也就是没有被抵消的几项的相加减.
第2个是用等比求和可直接求出来,是以0.5为第一项.0.25为公比的等比和
类似的列项还有1/(n-1)n(n+1)..
是否可以解决您的问题?
⑻ 9x6一6x3
这个题目可以用简便方法计算。
9×6-6×3
=(9-3)×6
=6×6
=36
简便方法有多种。如下:
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
⑼ 什么是裂项法
裂项法,这是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。通常用于代数,分数,有时候也用于整数。

裂项法小结:
此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意: 余下的项具有如下的特点:
1、余下的项前后的位置前后是对称的。
2、余下的项前后的正负性是相反的。
易错点:注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)。