导航:首页 > 源码编译 > 朴素贝叶斯算法应用

朴素贝叶斯算法应用

发布时间:2022-06-27 01:08:41

‘壹’ 朴素贝叶斯的定义

学过概率的同学一定都知道贝叶斯定理:
这个在250多年前发明的算法,在信息领域内有着无与伦比的地位。贝叶斯分类是一系列分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯算法(Naive Bayesian) 是其中应用最为广泛的分类算法之一。
朴素贝叶斯分类器基于一个简单的假定:给定目标值时属性之间相互条件独立。
通过以上定理和“朴素”的假定,我们知道:
P( Category | Document) = P ( Document | Category ) * P( Category) / P(Document)

‘贰’ 贝叶斯分类算法在数据挖掘中有什么应用

一般用朴素贝叶斯利用先验概率求解实际概率,进行预测和分类。
分类应用多了去了,最有名的就是信用评价了吧~

贝叶斯就那点东西,没啥可研究的了。。。

搞概率相关的话模糊逻辑可能容易出点东西~

‘叁’ 朴素贝叶斯算法的原理是什么

朴素贝叶斯分类(NBC)是以贝叶斯定理为基础并且假设特征条件之间相互独立的方法,以特征词之间独立作为前提假设,学习从输入到输出的联合概率分布,再基于学习到的模型。


朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。

最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。

同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。

朴素贝叶斯算法(Naive Bayesian algorithm) 是应用最为广泛的分类算法之一。

朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重,也没有哪个属性变量对于决策结果占有着较小的比重。

虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。



‘肆’ 朴素贝叶斯的推理学习算法

朴素贝叶斯的推理学习算法
贝叶斯公式简易推导式:
朴素贝叶斯的朴素在于假设B特征的每个值相互独立,所以朴素贝叶斯的公式是这样的
学习与分类算法:
(1)计算先验概率和条件概率
拉普拉斯平滑:
(2)代入被测样本向量,得到不同类别P,再根据后验概率最大化,取P最大的类别作为该标签类别。
朴素贝叶斯优点在于对于小规模数据很好,适合多分类。缺点是数据输入形式敏感而且特征值之间的相互独立很难保证带来的影响。

‘伍’ 朴素贝叶斯的应用

和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。
解决这个问题的方法一般是建立一个属性模型,对于不相互独立的属性,把他们单独处理。例如中文文本分类识别的时候,我们可以建立一个字典来处理一些词组。如果发现特定的问题中存在特殊的模式属性,那么就单独处理。
这样做也符合贝叶斯概率原理,因为我们把一个词组看作一个单独的模式,例如英文文本处理一些长度不等的单词,也都作为单独独立的模式进行处理,这是自然语言与其他分类识别问题的不同点。
实际计算先验概率时候,因为这些模式都是作为概率被程序计算,而不是自然语言被人来理解,所以结果是一样的。
在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。但这点有待验证,因为具体的问题不同,算法得出的结果不同,同一个算法对于同一个问题,只要模式发生变化,也存在不同的识别性能。这点在很多国外论文中已经得到公认,在机器学习一书中也提到过算法对于属性的识别情况决定于很多因素,例如训练样本和测试样本的比例影响算法的性能。
决策树对于文本分类识别,要看具体情况。在属性相关性较小时,NBC模型的性能稍微良好。属性相关性较小的时候,其他的算法性能也很好,这是由于信息熵理论决定的。

‘陆’ 朴素贝叶斯算法应用在哪

文本分类方面用的比较多

‘柒’ 朴素贝叶斯算法 K Nearest Neighbor算法 K-Means 算法 具体应用环境有什么区别

Naive Bayes和K-NN是分类算法,有监督训练样本,都比较快
样本少,特征之间接近独立分布的时候建议用Naive Bayes,通常就用正态分布最大似然估计特征概率
样本多的时候建议用K-NN,不过距离测度没有通用的最好选择

K-Means是无监督的聚类算法,没样本的时候就用这个,速度相当慢,还是离线的

‘捌’ 朴素贝叶斯算法不是可以直接分类,为什么还要机器学习

朴素贝叶斯本来就是机器学习里的一种分类器,而且只是生成模型中的一类。
是生成模型的话,你得假设分布。”朴素“的话还得有独立性假设。结果如何和这些假设是否准确都有关系。总体来说生成模型假阳性率和效率也都一般般。
再者,给定图像的像素值,你觉得直接用这个特征来建表训练朴素贝叶斯的可行性如何?我觉得几乎没有可行性。相比起自己设计图像类数据的特征提取,深度卷积完全不需要管这一步所以至少图像方面深度学习目前的优势是毋庸置疑的。

朴素贝叶斯目前也就在自然语言之类的方面有不错的应用吧。

‘玖’ 朴素贝叶斯分类原理

贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naïve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。

由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。

‘拾’ 为什么朴素贝叶斯称为“朴素”请简述朴素贝叶斯分类的主要思想

朴素贝叶斯分类器是一种应用基于独立假设的贝叶斯定理的简单概率分类器,之所以成为朴素,应该是Naive的直译,意思为简单,朴素,天真。

1、贝叶斯方法

贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。

贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。

2、朴素贝叶斯算法

朴素贝叶斯算法(Naive Bayesian algorithm) 是应用最为广泛的分类算法之一。

朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重,也没有哪个属性变量对于决策结果占有着较小的比重。

虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。

(10)朴素贝叶斯算法应用扩展阅读

研究意义

人们根据不确定性信息作出推理和决策需要对各种结论的概率作出估计,这类推理称为概率推理。概率推理既是概率学和逻辑学的研究对象,也是心理学的研究对象,但研究的角度是不同的。概率学和逻辑学研究的是客观概率推算的公式或规则。

而心理学研究人们主观概率估计的认知加工过程规律。贝叶斯推理的问题是条件概率推理问题,这一领域的探讨对揭示人们对概率信息的认知加工过程与规律、指导人们进行有效的学习和判断决策都具有十分重要的理论意义和实践意义。

阅读全文

与朴素贝叶斯算法应用相关的资料

热点内容
域名服务器可将域名地址 浏览:721
广州服务器机柜怎么卖 浏览:236
转让腾讯云三年服务器 浏览:252
网易云音乐加密怎么处理 浏览:387
编译小视频软件 浏览:595
盒马app买东西怎么送 浏览:119
编译原理国产 浏览:691
在线用pdf转word 浏览:424
咪咕app怎么发表文章 浏览:209
phpsftp上传 浏览:936
php可以干嘛 浏览:879
梁箍筋加密区需要满绑扎吗 浏览:330
程序员半个月工资多少 浏览:821
云服务器租赁还是私有 浏览:752
php七牛视频上传 浏览:14
php五星 浏览:311
使用api访问外部文件夹 浏览:220
自来水加密阀能控制水量吗 浏览:351
移动花卡定向app怎么订 浏览:429
php调用txt 浏览:261