Ⅰ LMS算法的流程是什么,LMS算法的原理,均衡算法的发展趋势是什么
LMS算法是首先通过期望信号与实际信号的误差,再通过最陡下降法,进行与误差成一定步长的迭代运算,从而使结果更趋近于最佳值。LMS算法的原理即使将E(e^2)视为e^2,简化了运算。
Ⅱ MATLAB 程序详解(关于波束形成)
你这里有两个程序,第二个程序与第一个实质上是一样的,区别就是信号与导向矢量的写法有点不同,这里我就不注释了。还有,我下面附了一段我自己的写的程序,里面有SIM算法。G-S正交化算法等。是基于圆阵形式的,你的算法是基于线阵的,他们程序上的区别在于导向矢量的不同。我的算法是某项目中的,保证好使。建议学习波束形成技术,注意把程序分块,例如分成,求导向矢量;最优权值;形成波束等等。
程序如下:
4单元均匀线阵自适应波束形成图
clear
clc
format long;
v=1;
M=4;
N=1000;%%%%%%%快拍数
f0=21*10^3;%%%%%%%%%%%信号与干扰的频率
f1=11*10^3;
f2=15*10^3;
omiga0=2*pi*f0;%%%%%%%信号与干扰的角频率
omiga1=2*pi*f1;
omiga2=2*pi*f2;
sita0=0.8; %信号方向
sita1=0.4; %干扰方向1
sita2=2.1; %干扰方向2
for t=1:N %%%%%%%%%%%%信号
adt(t)=sin(omiga0*t/(N*f0));
a1t(t)=sin(omiga1*t/(N*f1));
a2t(t)=sin(omiga2*t/(N*f2));
end
for i=1:M %%%%%%%%%%%%信号的导向矢量:线阵的形式
ad(i,1)=exp(j*(i-1)*pi*sin(sita0));
a1(i,1)=exp(j*(i-1)*pi*sin(sita1));
a2(i,1)=exp(j*(i-1)*pi*sin(sita2));
end
R=zeros(M,M);
for t=1:N
x=adt(t)*ad+a1t(t)*a1+a2t(t)*a2; %阵列对信号的完整响应
R=R+x*x';%信号的协方差矩阵
end
R=R/N;%%%%%%%%%协方差矩阵,所有快拍数的平均
miu=1/(ad'*inv(R)*ad);%%%%%%这个貌似是LMS算法的公式,具体我记不太清,这里是求最优权值,根据这个公式求出,然后加权
w=miu*inv(R)*ad;
%%%%%%形成波束%%%%%%%%%%%%%%%%%%%
for sita=0:pi/100:pi
for i=1:M
x_(i,1)=exp(j*(i-1)*pi*sin(sita));
end
y(1,v)=w'*x_;%%%%%%%对信号进行加权,消除干扰
v=v+1;
end
y_max=max(y(:));%%%%%%%%%%%%%%%归一化
y_1=y/y_max;
y_db=20*log(y_1);
sita=0:pi/100:pi;
plot(sita,y)
Xlabel(‘sitaa’)
Ylabel(‘天线增益db’)
4单元均匀线阵自适应波束形成
目标
clear
clc
format long;
v=1;
M=4;阵元数
N=100;
f0=21*10^3;
omiga0=2*pi*f0;
sita0=0.6;%信号方向
for t=1:N
adt(t)=sin(omiga0*t/(N*f0));
end
for i=1:M
ad(i,1)=exp(j*(i-1)*pi*sin(sita0));
end
R=zeros(4,4);
r=zeros(4,1);
for t=1:N
x=adt(t)*ad;
R=R+x*x.';
end
R=R/N;
miu=1/(ad.'*inv(R)*ad);
w=miu*inv(R)*ad;
for sita=0:pi/100:pi/2
for i=1:M
a(i,1)=exp(j*(i-1)*pi*sin(sita));
end
y(1,v)=w.'*a;
v=v+1;
end
sita=0:pi/100:pi/2;
plot(sita,y)
xlabel('sita')
ylabel('天线增益’)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%我的程序%%%%%%%%%%%%%%%
function jieshousignal
%期望信号数:1个
%干扰信号数:4个
%信噪比已知
%干燥比已知
%方位角已知
clc;
clear all;
close all;
%//参数设置===========================================
www1=0;
www2=0;
www3=0;
% for rrr=1:16000
signal_num=1; %signal number
noise_num=5; %interference number
R0=0.6; %圆的半径
SP=2000; %Sample number
N=8; %阵元数
snr=-10; %Signal-to-Noise
sir1=10; %Signal-to-Interference one
sir2=10; %Signal-to-Interference two
sir3=10; %Signal-to-Interf
sir4=10;
sir5=10;
%//================noise Power-to-signal Power====================
factor_noise_1=10.^(-sir1/10);
factor_noise_2=10.^(-sir2/10);
factor_noise_3=10.^(-sir3/10);
factor_noise_4=10.^(-sir4/10);
factor_noise_5=10.^(-sir5/10);
factor_noise_targe=10.^(-snr/10);
% //======================== ===============
d1=85*pi/180;%%干扰1的方位角
d2=100*pi/180;%干扰2的方位角
d3=147*pi/180;%干扰3的方位角
d4=200*pi/180;%干扰4的方位角
d5=250*pi/180;%干扰5的方位角
d6=150*pi/180;%目标的方位角
e1=15*pi/180;%%干扰1的俯仰角
e2=25*pi/180;%干扰2的俯仰角
e3=85*pi/180;%干扰3的俯仰角
e4=50*pi/180;%干扰4的俯仰角
e5=70*pi/180;%干扰5的俯仰角
e6=85*pi/180;%目标的俯仰角
% //====================目标信号==========================
t=1:1:SP;
fc=2e7;
Ts=1/(3e10);
S0=5*cos(2*pi*fc*t*Ts);%目标信号
for kk=1:N
phi_n(kk)=2*pi*(kk-1)/N;
end
%//====================操纵矢量==========================================
A=[conj(exp(j*2*pi*R0*cos(d6-phi_n)*sin(e6)));conj(exp(j*2*pi*R0*cos(d1-phi_n)*sin(e1)));conj(exp(j*2*pi*R0*cos(d2-phi_n)*sin(e2)));conj(exp(j*2*pi*R0*cos(d3-phi_n)*sin(e3)));conj(exp(j*2*pi*R0*cos(d4-phi_n)*sin(e4)));conj(exp(j*2*pi*R0*cos(d5-phi_n)*sin(e5)))]';
A1=[conj(exp(j*2*pi*R0*cos(d1-phi_n)*sin(e1)));conj(exp(j*2*pi*R0*cos(d2-phi_n)*sin(e2)));conj(exp(j*2*pi*R0*cos(d3-phi_n)*sin(e3)));conj(exp(j*2*pi*R0*cos(d4-phi_n)*sin(e4)));conj(exp(j*2*pi*R0*cos(d5-phi_n)*sin(e5)))]';
% //==========================================================Power of the interference
% // depending on the signal power and SIR
Ps1=0;
Ps2=0;
Ps3=0;
Ps4=0;
Ps5=0;
S1=zeros(1,SP);
S2=zeros(1,SP);
S3=zeros(1,SP);
S4=zeros(1,SP);
S5=zeros(1,SP);
Ps0=S0*S0'/SP; % signal power
Ps1=Ps0*factor_noise_1;
Ps2=Ps0*factor_noise_2;
Ps3=Ps0*factor_noise_3;
Ps4=Ps0*factor_noise_4;
Ps5=Ps0*factor_noise_5;
% //==========================干扰信号的随机包络=========================
S1=normrnd(0,sqrt(Ps1/2),1,SP)+j*normrnd(0,sqrt(Ps1/2),1,SP);
S2=normrnd(0,sqrt(Ps2/2),1,SP)+j*normrnd(0,sqrt(Ps2/2),1,SP);
S3=normrnd(0,sqrt(Ps3/2),1,SP)+j*normrnd(0,sqrt(Ps3/2),1,SP);
S4=normrnd(0,sqrt(Ps4/2),1,SP)+j*normrnd(0,sqrt(Ps4/2),1,SP);
S5=normrnd(0,sqrt(Ps5/2),1,SP)+j*normrnd(0,sqrt(Ps5/2),1,SP);
%//
S=[S0;S1;S2;S3;S4;S5];
SS1=[S1;S2;S3;S4;S5];
X=A*S;%信号加干扰
XX2=A1*SS1; %接收到的干扰
Pw_noise=sqrt(Ps0*factor_noise_targe/2);
a1=randn(N,SP);
a2=randn(N,SP);
a1=a1/norm(a1);
a2=a2/norm(a2);
W=Pw_noise*(a1+sqrt(-1)*a2);
X=X+W;
% //--------------------------SMI算法----------------------------------------
Rd=X*S0'/SP;
R=X*X'/(SP*1);
Wc_SMI=pinv(R)*Rd./(Rd'*pinv(R)*Rd);%权向量
Wc_SMI=Wc_SMI/norm(Wc_SMI);
Y_SMI=Wc_SMI'*X; %SMI算法恢复出来的信号
%//-------------------------------------GS算法------------------
m=1;
for i=1:400:2000
X2(:,m)=XX2(:,i);
m=m+1;
end
a=zeros(1,8);
phi_n=zeros(1,8);
phi=0:pi/180:2*pi;
theta=0:pi/180:pi/2;
for kk=1:8
a(kk)=1;
phi_n(kk)=2*pi*(kk-1)/8;
end
x1=zeros(1,8);
x2=zeros(1,8);
x3=zeros(1,8);
x4=zeros(1,8);
x5=zeros(1,8);
x1=X2(:,1)';
x2=X2(:,2)';
x3=X2(:,3)';
x4=X2(:,4)';
x5=X2(:,5)';
Z1=x1;
Z1_inner_proct=Z1.*conj(Z1);
Z1_mode=sqrt(sum(Z1_inner_proct));
Y1=Z1./Z1_mode;
Inner_proct=sum(x2.*conj(Y1));
Z2=x2-Inner_proct*Y1;
Z2_inner_proct=sum(Z2.*conj(Z2));
Z2_mode=sqrt(Z2_inner_proct);
Y2=Z2./Z2_mode;
Inner_proct1=sum(x3.*conj(Y1));
Inner_proct2=sum(x3.*conj(Y2));
Z3=x3-Inner_proct1*Y1-Inner_proct2*Y2;
Z3_inner_proct=sum(Z3.*conj(Z3));
Z3_mode=sqrt(Z3_inner_proct);
Y3=Z3./Z3_mode;
Inner_proct1_0=sum(x4.*conj(Y1));
Inner_proct2_0=sum(x4.*conj(Y2));
Inner_proct3_0=sum(x4.*conj(Y3));
Z4=x4-Inner_proct1_0*Y1-Inner_proct2_0*Y2-Inner_proct3_0*Y3;
Z4_inner_proct=sum(Z4.*conj(Z4));
Z4_mode=sqrt(Z4_inner_proct);
Y4=Z4./Z4_mode;
Inner_proct1_1=sum(x5.*conj(Y1));
Inner_proct2_1=sum(x5.*conj(Y2));
Inner_proct3_1=sum(x5.*conj(Y3));
Inner_proct4_1=sum(x5.*conj(Y4));
Z5=x5-Inner_proct1_1*Y1-Inner_proct2_1*Y2-Inner_proct3_1*Y3-Inner_proct4_1*Y4;
Z5_inner_proct=sum(Z5.*conj(Z5));
Z5_mode=sqrt(Z5_inner_proct);
Y5=Z5./Z5_mode;
%Y1
%Y2
%Y3
%Y4
%Y5
w0=zeros(1,8);
w=zeros(1,8);
for mm=1:8;
w0(mm)=exp(-j*2*pi*R0*cos(d6-phi_n(mm))*sin(e6));
end
dd1=sum(w0.*conj(Y1))*Y1;
dd2=sum(w0.*conj(Y2))*Y2;
dd3=sum(w0.*conj(Y3))*Y3;
dd4=sum(w0.*conj(Y4))*Y4;
dd5=sum(w0.*conj(Y5))*Y5;
w=w0-dd1-dd2-dd3-dd4-dd5;
Wc_GS=w;
Wc_GS=Wc_GS/(norm(Wc_GS));
Y_GS=Wc_GS*X; %GS算法恢复出来的图像
%//----------------------------------MMSE算法-----------------------
Rd=X*S0'/SP;
R=X*X'/(SP*1);
Wc_MMSE=pinv(R)*Rd;
Wc_MMSE=Wc_MMSE/norm(Wc_MMSE);
Y_MMSE=Wc_MMSE'*X; %MMSE算法恢复出来的信号
S0=S0/norm(S0);
Y_GS=Y_GS/norm(Y_GS);
Y_SMI=Y_SMI/norm(Y_SMI);
Y_MMSE=Y_MMSE/norm(Y_MMSE);
% figure(1)
% plot(real(S0));
% title('原始信号');
% xlabel('采样快拍数');
% ylabel('信号幅度');
% figure(2)
% plot(real(Y_SMI));
% title('运用SMI算法处理出的信号');
% xlabel('采样快拍数');
% ylabel('信号幅度');
% figure(3)
% plot(real(Y_GS));
% title('运用G-S算法处理出的信号');
% xlabel('采样快拍数');
% ylabel('信号幅度');
% figure(4)
% plot(real(Y_MMSE));
% for i=1:SP
% ss(i)=abs(S0(i)-Y_SMI(i))^2;
% end
% q_1=mean(ss);
% for i=1:SP
% ss1(i)=abs(S0(i)-Y_GS(i))^2;
% end
% q_2=mean(ss1);
% for i=1:SP
% ss2(i)=abs(S0(i)-Y_MMSE(i))^2;
% end
% q_3=mean(ss2);
%
% www1=www1+q_1;
% www2=www2+q_2;
% www3=www3+q_3;
% end
% www1/16000
% www2/16000
% www3/16000
phi=0:pi/180:2*pi;
theta=0:pi/180:pi/2;
%
% % //------------------------ 形成波束-----------------------------------------
F_mmse=zeros(91,361);
F_smi=zeros(91,361);
F_gs=zeros(91,361);
for mm=1:91
for nn=1:361
p1=sin(theta(mm));
p2=cos(phi(nn));
p3=sin(phi(nn));
q1=sin(e6);
q2=cos(d6);
q3=sin(d6);
for hh=1:8
w1=cos(phi_n(hh));
w2=sin(phi_n(hh));
zz1=q2*w1+q3*w2;
zz2=p2*w1+p3*w2;
zz=zz2*p1-zz1*q1;
F_mmse(mm,nn)= F_mmse(mm,nn)+conj(Wc_MMSE(hh))*(exp(j*2*pi*R0*(zz2*p1)));
F_smi(mm,nn)=F_smi(mm,nn)+conj(Wc_SMI(hh))*(exp(j*2*pi*R0*(zz2*p1)));
F_gs(mm,nn)=F_gs(mm,nn)+conj((Wc_GS(hh))')*(exp(j*2*pi*R0*(zz2*p1)));
end
end
end
F_MMSE=abs(F_mmse);
F_SMI=abs(F_smi);
F_GS=abs(F_gs);
figure(5)
mesh(20*log10(F_MMSE))
figure(6)
mesh(20*log10(F_SMI))
title('SMI算法波束形成图');
xlabel('方位角');
ylabel('俯仰角');
zlabel('幅度/dB');
figure(7)
mesh(20*log10(F_GS))
title('G-S算法波束形成图');
xlabel('方位角');
ylabel('俯仰角');
zlabel('幅度/dB');
Ⅲ 如何确定lms算法的值,值与算法收敛的关系如何
LMS算法
是首先通过期望信号与实际信号的误差,再通过最陡下降法,进行与误差成一定步长的迭代运算,从而使结果更趋近于最佳值。LMS算法的原理即使将E(e^2)视为e^2,简化了运算。
Ⅳ 什么是LMS算法,全称是什么
1959年,Widrow和Hof提出的最小均方(LMS )算法对自适应技术的发展起了极
大的作用。由于LMS算法简单和易于实现,它至今仍被广泛应用。对LMS算法的性能
和改进算法已经做了相当多的研究,并且至今仍是一个重要的研究课题。进一步的研究
工作涉及这种算法在非平稳、相关输入时的性能研究。当输入相关矩阵的特征值分散时,
LMS算法的收敛性变差,研究的另一个方面在于如何解决步长大小与失调量之间的矛
盾。
全称 Least mean square
Ⅳ lms算法是什么
LMS(Least mean square)算法,即最小均方误差算法。
lms算法由美国斯坦福大学的B Widrow和M E Hoff于1960年在研究自适应理论时提出,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。在滤波器优化设计中,采用某种最小代价函数或者某个性能指标来衡量滤波器的好坏,而最常用的指标就是均方误差,也把这种衡量滤波器好坏的方法叫做均方误差准则。lms算法的特点
根据小均方误差准则以及均方误差曲面,自然的我们会想到沿每一时刻均方误差 的陡下降在权向量面上的投影方向更新,也就是通过目标函数的反梯度向量来反 复迭代更新。由于均方误差性能曲面只有一个唯一的极小值,只要收敛步长选择恰当, 不管初始权向量在哪,后都可以收敛到误差曲面的小点,或者是在它的一个邻域内。
Ⅵ 什么是最小均方(LMS)算法
全称 Least mean square 算法。中文是最小均方算法。
感知器和自适应线性元件在历史上几乎是同时提出的,并且两者在对权值的调整的算法非常相似。它们都是基于纠错学习规则的学习算法。感知器算法存在如下问题:不能推广到一般的前向网络中;函数不是线性可分时,得不出任何结果。而由美国斯坦福大学的Widrow和Hoff在研究自适应理论时提出的LMS算法,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。
LMS算法步骤:
1,、设置变量和参量:
X(n)为输入向量,或称为训练样本
W(n)为权值向量
b(n)为偏差
d(n)为期望输出
y(n)为实际输出
η为学习速率
n为迭代次数
2、初始化,赋给w(0)各一个较小的随机非零值,令n=0
3、对于一组输入样本x(n)和对应的期望输出d,计算
e(n)=d(n)-X^T(n)W(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行。
Ⅶ LMS算法与最陡下降法有何不同
最陡下降法在迭代过程中与输入信号无关,不具有有对输入信号统计特性变化的自适应性,最陡下降法的互相关向量P和自相关矩阵R都是确定量,所以根据最陡下降法迭代式所得到的权向量w(n)也是确定的向量序列。所以,最陡下降法不是自适应算法。
而LMS算法中的u(n)和e(n)都是随机过程,得到的w(n)也是随机过程向量。LMS算法是自适应算法。
Ⅷ LMS算法的简介
全称 Least mean square 算法。中文是最小均方算法。
感知器和自适应线性元件在历史上几乎是同时提出的,并且两者在对权值的调整的算法非常相似。它们都是基于纠错学习规则的学习算法。感知器算法存在如下问题:不能推广到一般的前向网络中;函数不是线性可分时,得不出任何结果。而由美国斯坦福大学的Widrow和Hoff在研究自适应理论时提出的LMS算法,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。
Ⅸ LMS算法的算法
LMS算法步骤:
1,、设置变量和参量:
X(n)为输入向量,或称为训练样本
W(n)为权值向量
e(n)为偏差
d(n)为期望输出
y(n)为实际输出
η为学习速率
n为迭代次数
2、初始化,赋给w(0)各一个较小的随机非零值,令n=0
3、对于一组输入样本x(n)和对应的期望输出d,计算
e(n)=d(n)-X(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行。
Ⅹ 什么是LMS算法
LMS算法是指 Least mean square 算法的意思。
全称 Least mean square 算法。是最小均方算法中文。
感知器和自适应线性元件在历史上几乎是同时提出的,并且两者在对权值的调整的算法非常相似。它们都是基于纠错学习规则的学习算法。感知器算法存在如下问题:不能推广到一般的前向网络中;函数不是线性可分时,得不出任何结果。而由美国斯坦福大学的Widrow和Hopf在研究自适应理论时提出的LMS算法,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。