导航:首页 > 源码编译 > 语音算法模板

语音算法模板

发布时间:2022-07-17 08:08:51

㈠ dtw算法在语音识别系统的应用,

DTW是动态时间规整算法,在语音识别系统中通常用于特定人识别,特定人识别即A用户使用这个语音识别系统,B用户使用就会出现语音识别出错或无法识别的现象。
DTW在语音识别系统中,是一个需要用户事先训练的系统。从操作方面上,首先需要训练,对需要控制的命令录制对应的语音;使用时只要说出与训练时同样的语音命令,即可出现识别结果,实现声控。

DTW在语音识别系统中充当数据匹配比对模块。语音识别系统首先采集用户的语音,经过端点检测,找出用户的有效语音而把其他非语音段给删除;然后经过MFCC特征提取,得到用户声音的特征,最后进入DTW,进行欧式距离的比对,距离最小对应的模板,即为识别结果。

希望以上信息对你有所帮助。

㈡ 语音识别技术的基本方法

一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模板匹配的方法以及利用人工神经网络的方法。 该方法起步较早,在语音识别技术提出的开始,就有了这方面的研究,但由于其模型及语音知识过于复杂,现阶段没有达到实用的阶段。
通常认为常用语言中有有限个不同的语音基元,而且可以通过其语音信号的频域或时域特性来区分。这样该方法分为两步实现:
第一步,分段和标号
把语音信号按时间分成离散的段,每段对应一个或几个语音基元的声学特性。然后根据相应声学特性对每个分段给出相近的语音标号
第二步,得到词序列
根据第一步所得语音标号序列得到一个语音基元网格,从词典得到有效的词序列,也可结合句子的文法和语义同时进行。 模板匹配的方法发展比较成熟,目前已达到了实用阶段。在模板匹配方法中,要经过四个步骤:特征提取、模板训练、模板分类、判决。常用的技术有三种:动态时间规整(DTW)、隐马尔可夫(HMM)理论、矢量量化(VQ)技术。
1、动态时间规整(DTW)
语音信号的端点检测是进行语音识别中的一个基本步骤,它是特征训练和识别的基础。所谓端点检测就是在语音信号中的各种段落(如音素、音节、词素)的始点和终点的位置,从语音信号中排除无声段。在早期,进行端点检测的主要依据是能量、振幅和过零率。但效果往往不明显。60年代日本学者Itakura提出了动态时间规整算法(DTW:DynamicTimeWarping)。算法的思想就是把未知量均匀的升长或缩短,直到与参考模式的长度一致。在这一过程中,未知单词的时间轴要不均匀地扭曲或弯折,以使其特征与模型特征对正。
2、隐马尔可夫法(HMM)
隐马尔可夫法(HMM)是70年代引入语音识别理论的,它的出现使得自然语音识别系统取得了实质性的突破。HMM方法现已成为语音识别的主流技术,目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM模型的。HMM是对语音信号的时间序列结构建立统计模型,将之看作一个数学上的双重随机过程:一个是用具有有限状态数的Markov链来模拟语音信号统计特性变化的隐含的随机过程,另一个是与Markov链的每一个状态相关联的观测序列的随机过程。前者通过后者表现出来,但前者的具体参数是不可测的。人的言语过程实际上就是一个双重随机过程,语音信号本身是一个可观测的时变序列,是由大脑根据语法知识和言语需要(不可观测的状态)发出的音素的参数流。可见HMM合理地模仿了这一过程,很好地描述了语音信号的整体非平稳性和局部平稳性,是较为理想的一种语音模型。
3、矢量量化(VQ)
矢量量化(VectorQuantization)是一种重要的信号压缩方法。与HMM相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。其过程是:将语音信号波形的k个样点的每一帧,或有k个参数的每一参数帧,构成k维空间中的一个矢量,然后对矢量进行量化。量化时,将k维无限空间划分为M个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。
核心思想可以这样理解:如果一个码书是为某一特定的信源而优化设计的,那么由这一信息源产生的信号与该码书的平均量化失真就应小于其他信息的信号与该码书的平均量化失真,也就是说编码器本身存在区分能力。
在实际的应用过程中,人们还研究了多种降低复杂度的方法,这些方法大致可以分为两类:无记忆的矢量量化和有记忆的矢量量化。无记忆的矢量量化包括树形搜索的矢量量化和多级矢量量化。 利用人工神经网络的方法是80年代末期提出的一种新的语音识别方法。人工神经网络(ANN)本质上是一个自适应非线性动力学系统,模拟了人类神经活动的原理,具有自适应性、并行性、鲁棒性、容错性和学习特性,其强的分类能力和输入-输出映射能力在语音识别中都很有吸引力。但由于存在训练、识别时间太长的缺点,目前仍处于实验探索阶段。
由于ANN不能很好的描述语音信号的时间动态特性,所以常把ANN与传统识别方法结合,分别利用各自优点来进行语音识别。

㈢ 语音ic常用语音格式有哪些

常用语音格式 PCM格式: Pulse Code Molation 脉冲编码调制,它将声音模拟信号采样后得到量化后的语音数据,是最基本最原始的一种语音格式。同它极为类似的还有RAW格式和SND格式。它们都是纯语音格式。 WAV格式:Wave Audio Files 是微软公司开发的一种声音文件格式,也叫波形声音文件,被Windows平台及其应用程序广泛支持。WAV格式支持许多压缩算法,支持多种音频位数、采样频率和声道,但WAV格式对存储空间需求太大不便于交流和传播。WAV文件里面存放的每一块数据都有自己独立的标识,通过这些标识可以告诉用户究竟这是什么数据,这些数据包括采样频率和位数,单声道(mono)还是立体声(stero)等。映发微信息科技(上海)总部--台湾九齐语音IC华东总代理。 ADPCM格式:是利用对过去的几个抽样值来预测当前输入的样值,并使其具有自适应的预测功能与实际检测值进行比较,随时对测得的差值自动进行量化级差的处理,使之始终保持与信号同步变化。它适用于语音变化率适中的情况,而且声音回放过程简短。它的优点是对于人声的处理比较逼真,一般达到90%以上,已广泛地应用于电话通信领域。 MP3格式: Moving Picture Experts Group Audio Layer III,简称为MP3。它是利用 MPEG Audio Layer 3 的技术,采取了名为感官编码技术的编码算法:编码时先对音频文件进行频谱分析,然后用过滤器滤掉噪音电平,接着通过量化的方式将剩下的每一位打散排列,最后形成具有较高压缩比的mp3文件,并使压缩后的文件在回放时能够达到较接近原音源的声音效果。它的实质是vbr(Variant Bitrate 可变波特率)可以根据编码的内容动态地选择合适的波特率,因此编码的结果是在保证了音质的同时又照顾了文件的大小。 mp3压缩率10倍甚至12倍。是最初出现的一种高压缩率的语音格式。 Linear Scale格式:根据声音的变化率大小,把声音分成若干段,对每段用线性比例进行压缩,但是它的比例是可变的。SUNLINK公司和ALPHA公司的Linear Scale格式为5bit。 Logpcm格式:基本上对整个声音进行线性压缩,将最后若干位去掉。这种压缩方式在硬件上很容易实现,但音质比Linear Scale差一些,特别是音量较小声音比较细腻的情况下效果较差。

㈣ 语音识别算法有哪些

DTW 特定人识别
HMM 非特定人识别
GMM
神经网络

㈤ 语音识别技术的系统结构

一个完整的基于统计的语音识别系统可大致分为三部分:
(1)语音信号预处理与特征提取;
(2)声学模型与模式匹配;
(3)语言模型与语言处理、
语音信号预处理与特征提取
选择识别单元是语音识别研究的第一步。语音识别单元有单词(句)、音节和音素三种,具体选择哪一种,由具体的研究任务决定。
单词(句)单元广泛应用于中小词汇语音识别系统,但不适合大词汇系统,原因在于模型库太庞大,训练模型任务繁重,模型匹配算法复杂,难以满足实时性要求。
音节单元多见于汉语语音识别,主要因为汉语是单音节结构的语言,而英语是多音节,并且汉语虽然有大约1300个音节,但若不考虑声调,约有408个无调音节,数量相对较少。因此,对于中、大词汇量汉语语音识别系统来说,以音节为识别单元基本是可行的。
音素单元以前多见于英语语音识别的研究中,但目前中、大词汇量汉语语音识别系统也在越来越多地采用。原因在于汉语音节仅由声母(包括零声母有22个)和韵母(共有28个)构成,且声韵母声学特性相差很大。实际应用中常把声母依后续韵母的不同而构成细化声母,这样虽然增加了模型数目,但提高了易混淆音节的区分能力。由于协同发音的影响,音素单元不稳定,所以如何获得稳定的音素单元,还有待研究。
语音识别一个根本的问题是合理的选用特征。特征参数提取的目的是对语音信号进行分析处理,去掉与语音识别无关的冗余信息,获得影响语音识别的重要信息,同时对语音信号进行压缩。在实际应用中,语音信号的压缩率介于10-100之间。语音信号包含了大量各种不同的信息,提取哪些信息,用哪种方式提取,需要综合考虑各方面的因素,如成本,性能,响应时间,计算量等。非特定人语音识别系统一般侧重提取反映语义的特征参数,尽量去除说话人的个人信息;而特定人语音识别系统则希望在提取反映语义的特征参数的同时,尽量也包含说话人的个人信息。
线性预测(LP)分析技术是目前应用广泛的特征参数提取技术,许多成功的应用系统都采用基于LP技术提取的倒谱参数。但线性预测模型是纯数学模型,没有考虑人类听觉系统对语音的处理特点。
Mel参数和基于感知线性预测(PLP)分析提取的感知线性预测倒谱,在一定程度上模拟了人耳对语音的处理特点,应用了人耳听觉感知方面的一些研究成果。实验证明,采用这种技术,语音识别系统的性能有一定提高。从目前使用的情况来看,梅尔刻度式倒频谱参数已逐渐取代原本常用的线性预测编码导出的倒频谱参数,原因是它考虑了人类发声与接收声音的特性,具有更好的鲁棒性(Robustness)。
也有研究者尝试把小波分析技术应用于特征提取,但目前性能难以与上述技术相比,有待进一步研究。 声学模型通常是将获取的语音特征使用训练算法进行训练后产生。在识别时将输入的语音特征同声学模型(模式)进行匹配与比较,得到最佳的识别结果。
声学模型是识别系统的底层模型,并且是语音识别系统中最关键的一部分。声学模型的目的是提供一种有效的方法计算语音的特征矢量序列和每个发音模板之间的距离。声学模型的设计和语言发音特点密切相关。声学模型单元大小(字发音模型、半音节模型或音素模型)对语音训练数据量大小、系统识别率,以及灵活性有较大的影响。必须根据不同语言的特点、识别系统词汇量的大小决定识别单元的大小。
以汉语为例:
汉语按音素的发音特征分类分为辅音、单元音、复元音、复鼻尾音四种,按音节结构分类为声母和韵母。并且由音素构成声母或韵母。有时,将含有声调的韵母称为调母。由单个调母或由声母与调母拼音成为音节。汉语的一个音节就是汉语一个字的音,即音节字。由音节字构成词,最后再由词构成句子。
汉语声母共有22个,其中包括零声母,韵母共有38个。按音素分类,汉语辅音共有22个,单元音13个,复元音13个,复鼻尾音16个。
目前常用的声学模型基元为声韵母、音节或词,根据实现目的不同来选取不同的基元。汉语加上语气词共有412个音节,包括轻音字,共有1282个有调音节字,所以当在小词汇表孤立词语音识别时常选用词作为基元,在大词汇表语音识别时常采用音节或声韵母建模,而在连续语音识别时,由于协同发音的影响,常采用声韵母建模。
基于统计的语音识别模型常用的就是HMM模型λ(N,M,π,A,B),涉及到HMM模型的相关理论包括模型的结构选取、模型的初始化、模型参数的重估以及相应的识别算法等。 语言模型包括由识别语音命令构成的语法网络或由统计方法构成的语言模型,语言处理可以进行语法、语义分析。
语言模型对中、大词汇量的语音识别系统特别重要。当分类发生错误时可以根据语言学模型、语法结构、语义学进行判断纠正,特别是一些同音字则必须通过上下文结构才能确定词义。语言学理论包括语义结构、语法规则、语言的数学描述模型等有关方面。目前比较成功的语言模型通常是采用统计语法的语言模型与基于规则语法结构命令语言模型。语法结构可以限定不同词之间的相互连接关系,减少了识别系统的搜索空间,这有利于提高系统的识别。

㈥ 求语音识别解决方案。

用IBM滴好,支持系统全局语音化

IBM ViaVoice

㈦ 怎么将SPCE061A语音识别的训练模板存入flash中而不用存储RAM中

如果将训练模板存储到flash中,你在使用这些数据时就会比较慢。
按照你的要求,设计过程一般是这样的:
第一次生成的训练样板用写flash的方式保存到flash中。识别时还是使用RAM中的数据。
第二次上电时,程序设计首先将flash中的训练样板数据读到ram中,识别则还是使用ram中的数据。

凌阳单片机实现的是特定人语音识别,使用的算法是DTW。
我们在DSP5416和DSP6713上均实现了特定人和非特定人识别。

㈧ 语音编解码的723.1(双速率语音编码算法)

类型:Audio
制定者:ITU-T
所需频宽:5.3Kbps(22.9)
特性:能够对音乐和其他音频信号进行压缩和解压缩,但它对语音信号来说是最优的。G.723.1采用了执行不连续传输的静音压缩,这就意味着在静音期间的比特流中加入了人为的噪声。除了预留带宽之外,这种技术使发信机的调制解调器保持连续工作,并且避免了载波信号的时通时断。
优点:避免了载波信号的时通时断。
缺点:语音质量一般
应用领域:voip
版税方式:Free
备注:G.723.1算法是 ITU-T建议的应用于低速率多媒体服务中语音或其它音频信号的压缩算法,其目标应用系统包括H.323、H.324等多媒体通信系统 。该算法已成为IP电话系统中的必选算法之一。

㈨ 谁知道语音识别这方面的知识!!!

高性能汉语数码语音识别算法

李虎生 刘加 刘润生

摘 要: 提出了一个高性能的汉语数码语音识别(MDSR)系统。 MDSR系统使用Mel频标倒谱系数(MFCC)作为主要的语音特征参数,同时提取共振峰轨迹和鼻音特征以区分一些易混语音对,并提出一个基于语音特征的实时端点检测算法,以减少系统资源需求,提高抗干扰能力。采用了两级识别框架来提高语音的区分能力,其中第一级识别用于确定识别候选结果,第二级识别用于区分易混语音对。由于采用了以上改进, MDSR系统识别率达到了98.8%.
关键词:汉语; 数码语音识别
分类号:TN 912.34 文献标识码:A
文章编号:1000-0054(2000)01-0032-03

High performance digit mandarin
speech recognition

LI Husheng LIU Jia LIU Runsheng
(Department of Electronic Engineering,Tsinghua University, Beijing 100084, China)

Abstract:High-performance mandarin digit speech recognition (MDSR) system is developed using MFCC (mel frequency cepstrum coefficient) as the main parameter identifying the speech patterns. The formant trajectory and the nasal feature are extracted to identify confused words. A feature-based, real-time endpoint detection algorithm is proposed to rece the system resource requirements and to improve the disturbance-proof ability. A two-stage recognition frame enhances discrimination by identifying candidate words in the first stage and confused word pairs in the second stage. These improvements result in a correct recognition rate of 98.8%.
Key words:mandarin;digit speech recognition▲

汉语数码语音识别 (mandarin digit speech recognition, MDSR) 是语音识别领域中一个具有广泛应用背景的分支,它的任务是识别“0”到“9”等10个非特定人汉语数码语音,在电话语音拨号、工业监控、家电遥控等领域有着极大的应用价值〔1〕。但与英语数码语音识别相比, MDSR的性能尚未达到成熟应用水平,这是因为 1) 汉语数码语音的混淆程度较高; 2) 汉语是一个多方言语种,说话人会带有或多或少的地方口音; 3) 在许多应用背景中,MDSR需要在运算和存储资源都较为紧张的数字信号处理器(digital signal processor, DSP)系统上实现,这为MDSR算法的设计带来了很大的限制。由于以上原因,MDSR是一项相当困难的任务。
针对汉语数码语音识别提出了一系列高性能的算法,使MDSR识别率达到了98.8%。由这些算法构成的识别系统框图如图1所示。
MDSR系统〔1〕提取的语音特征参数包括用于识别的参数和用于端点检测的参数。

图1 MDSR系统框图

1 语音前端处理

语音前端处理包括语音特征提取和端点检测两部分。

1.1 语音特征提取
1.1.1 基本识别参数
目前常用的语音识别参数有基于线性预测编码(LPC)的线性预测倒谱系数(LPCC)和基于Mel频标的倒谱系数(MFCC)〔2〕。实验证明,采用MFCC参数时系统识别率高于采用LPCC参数。因此本文的基本识别参数采用MFCC参数及一阶差分MFCC参数。

1.1.2 共振峰轨迹
在MDSR中,易混淆语音“2”和“8”可以由其第2,3共振峰的变化趋势区分开〔3〕。因此可将共振峰轨迹作为识别参数之一,并选用峰值选取算法来提取共振峰轨迹〔3〕。

1.1.3 鼻音特征参数
汉语数码语音中,“0”的元音具有鼻音的特征,而“0”容易与具有非鼻化元音的“6”混淆,因此鼻音特征可用于提高“0”的识别率。鼻音的特征包括〔4〕:
1) 鼻音在频谱低端(约0.25kHz左右)有1个较强的共振峰。
2) 鼻音在中频段(约0.8~2.3kHz)的能量分布较为均匀,没有明显的峰或谷。
采用以下2个参数表征鼻音的特征:
1) 低频能量比:

(1)

其中fn为鼻音低频共振峰频率, B为鼻音低频共振峰带宽。Fk为对语音作快速Fourior变换(FFT)后第k个频率点的能量, 〔f1,f2〕则为语音“6”能量集中的频带。
2) 频谱质心:

(2)

其中〔fL,fH〕为0.8~2.3kHz的中频段。由于MDSR系统采用的基本识别参数为MFCC参数,其计算过程中需要作FFT,所以低频能量比和频谱质心两个参数可以顺带算出,不会影响特征提取的实时完成。

1.2 端点检测
本文提出了基于语音特征的实时端点检测算法(feature-based real-time endpoint detection, FRED),充分利用汉语数码语音的特点,在实时提取特征参数后完成端点检测,检测到的端点只精确到帧的量级。
根据语音学知识〔4〕, MDSR中各类语音的频谱特点如表1

表1 汉语数码语音频谱特点

频 谱 特 征
浊 音 元 音 低频(0.1至0.4kHz间)能量较高; 中频(0.64至2.8kHz)能量较高
浊辅音 低频(0.1至0.4kHz间)能量较高; 中频(0.64至2.8kHz)能量较低
清辅音 高频(3.5kHz以上)能量较高

采用3个频谱能量分布参数{R1,R2,R3}分别反应频谱高频、低频和中频的分布特征。其定义如下:
(3)
(4)

其中: i表示第i帧, N为语音帧长,也即FFT点数, Fk为对语音帧作FFT后各频率点能量, T为语音的总帧数,式(3),(4) 中求和号的上下限由表1中相应频率范围确定,当N为256,采样频率为实验所用语音库的11kHz时, f0=81, f1=9, f2 =2, f3=65, f4=15.由于进行了能量归一化,所以上述特征与语音的强度是无关的。由于计算MFCC参数时需要作FFT,因此频谱能量分布参数可以顺带算出。此外,用于端点检测的参数还包括短时能量参数E0(i)〔5〕.
由以上参数, FRED算法过程为:
1) 根据采入信号首尾两帧确定能量阈值;
2) 根据参数R2确定语音浊音段;
3) 根据参数R1与E0向浊音段两端扩展式搜索语音起始帧;
4) 根据参数R3确定元音段。
FRED算法的特点是:
1) 利用了语音的本质特征进行端点检测,能够很好地适应环境的变化和干扰,实验证明FRED算法可以有效地提高识别率; 2) 将语音端点定在帧的量级上,保证了特征参数在采样时实时提取,节省了系统运行时间,大大减少了系统所需的存储量; 3) 能够准确地确定语音的元音段,从而将辅音与元音分割开,有利于对语音局部特征的辨识。

2 识别算法

实验表明, MDSR的识别错误集中在少数几对易混语音中〔1〕,因此本文采用了两极识别框架,即第一级完成对识别结果的初步确定,第二级完成对易混淆语音的进一步辨识。

2.1 第一级识别
在第一级识别中采用的基本方法为离散隐含Malkov模型(DHMM)算法〔5〕,用Viterbi算法〔5〕计算各个数码语音模型产生采入语音的概率Pr。
由于HMM是一个有人为假设的模型,所以有不可避免的缺陷。其中一个缺陷是在HMM中各状态的持续时间呈几何分布,即

P(Li=n)=anii(1-aii), (5)

其中: Li为状态i的持续时间, aii为状态i跳转回自身的概率。按照式(5),状态持续时间越长,其概率越小,这是不符合实际情况的。用Γ分布来描述状态持续时间〔5〕,即

(6)

其中αi和βi为Γ分布的参数, Fi为归一化因子参数,以上各参数在训练时由训练语音样本估计出。在识别时,用Viterbi算法获得的最佳状态路径中各状态持续时间的概率对Pr作修正:

(7)

其中: λ为加权系数, S为状态数。识别结果则由修正后的概率P�′r获得。实验证明,用状态持续时间分布对Pr进行修正所得的识别性能有明显的提高。

2.2 第二级识别
对第一级识别的错误作分析,我们发现大部分错误都集中在少数几对易混语音中。表2列出了识别错误最多的6对语音(其中“1”念为〔yao〕)占所有错误的百分比及其区分特征。可见这6对语音占所有错误的91%,所以如果能够在第二级识别中对这几对语音作进一步的辩识,整个MDSR系统的性能会有很大的提高。

表2 易混语音错误百分比及其区分特征

易混语音 占识别错误百分比/% 区分特征
“2”“8” 45 共振峰轨迹变化趋势
“1”“9” 12 不同的辅音
“1”“6” 11 不同的辅音
“0”“6” 11 鼻音特征的有无
“3”“4” 8 不同的元音
“6”“9” 4 辅音的清浊性

由表2可见,易混语音“2”“8”, “0”“6”, “6”“9”可以用表征其区分特征的参数,根据一定的规则进行判决,而“1”“9”, “1”“6”, “3”“4”则可以利用端点检测中元、辅音分割的结果,训练元音部分和辅音部分的HMM参数,在识别时针对相应部分再作一次局部HMM识别。表3列出了各对易混语音第二级识别的方法。
表3 第二级识别方法

易混语音 第二级识别方法 规则判决的特征参数或
局部HMM的辨识部位
“2”“8” 规则判决 共振峰轨迹
“1”“9” 局部HMM辨识 辅音
“1”“6” 局部HMM辨识 辅音
“0”“6” 规则判决 鼻音特征
“3”“4” 局部HMM辨识 元音
“6”“9” 规则判决 频谱分布参数R1

3 实验结果

实验使用了一个包含160人从“0”到“9”的各一遍发音的语音库来测试系统的性能,库中语音采样率为11kHz,量化精度为16bit线性量化,录音背景为普通办公室环境。
首先测试了特征参数采用LPCC参数,端点检测采用快速端点检测算法〔6〕,只用Viterbi算法进行一级识别时的基本结果,然后测试了逐个加入本文所提出的各种方法后的识别率,结果如表4。可见,所采用的每一种方法都使系统性能较之于基本系统有了显着的提高,最后达到98.8%的识别率。

表4 算法性能比较

采用的算法 识别率/%
基本结果 91.1
采用MFCC参数 92.9
FRED算法 95.4
状态持续时间分布 96.0
第二级识别 98.8

4 结 论
采用了一系列算法,有效地提高了MDSR系统的识别率,实现了一个高性能的MDSR系统,其特点为:
1) 采用了两极识别框架,增强了对易混语音的区分能力。
2) 充分利用针对汉语数码语音的语音学知识,提高了端点检测的抗干扰能力,提取了用于区分易混语音的共振峰轨迹、鼻音特征等声学特征,进一步提高了系统识别率。
3) 各算法所需的运算量和存储量都较小,有利于MDSR在DSP系统上的实现。■

基金项目:国家自然科学基金项目(69772020)和国家“八六三”高技术项目(863-512-9805-10)
作者简介:李虎生 (1975-), 男(汉), 四川, 硕士研究生
作者单位:李虎生(清华大学,电子工程系,北京,100084)
刘加(清华大学,电子工程系,北京,100084)
刘润生(清华大学,电子工程系,北京,100084)

参考文献:

〔1〕顾良, 刘润生. 汉语数码语音识别: 困难分析与方法比较 〔J〕. 电路与系统学报, 1997, 2 (4): 32-39.
Gu Liang, Liu Runsheng. Mandarin digit speech recognition: state of the art, difficult points analysis and methods comparison 〔J〕. J of Circuits and Systems, 1997, 2(4): 32-39. (in Chinese)
〔2〕Davis S B, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences 〔J〕. IEEE Trans, on Speech and Audio Signal Processing, 1980, 28 (4): 357-366.
〔3〕李虎生, 杨明杰, 刘润生. 用共振峰轨迹提高汉语数码语音识别性能 〔J〕. 清华大学学报, 1999, 39(9).
Li Husheng, Yang Mingjie, Liu Runsheng. Use formant trajectory to improve the performance of mandarin digit speech recognition 〔J〕. J of Tsinghua University, 1999, 39(9): 69-71. (in Chinese)
〔4〕吴宗济, 林茂灿. 实验语音学教程 〔M〕. 北京: 高等教育出版社, 1989.
Wu Zongji, Lin Maocan. Tutorial on Experimental Phonetics 〔M〕. Beijing: Higher Ecation Press, 1989. (in Chinese)
〔5〕杨行峻, 迟惠生. 语音信号数字处理 〔M〕. 北京: 电子工业出版社, 1995.
Yang Xingjun, Chi Huisheng. Digit Speech Signal Processing 〔M〕. Beijing: Publishing House of Electronic Instry, 1995. (in Chinese)
〔6〕顾良. 汉语数码语音识别方法研究及DSP系统设计 〔D〕. 北京: 清华大学, 1997.
Gu Liang. Research on Methodologies for Mandarin Digit Speech Recognition and Design of its DSP System 〔D〕. Beijing: Tsinghua University, 1997. (in Chinese)
http://www.oxbad.com/DSP/maindoc/audio/PAGE/5.HTM

阅读全文

与语音算法模板相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:577
python员工信息登记表 浏览:375
高中美术pdf 浏览:158
java实现排列 浏览:511
javavector的用法 浏览:979
osi实现加密的三层 浏览:230
大众宝来原厂中控如何安装app 浏览:911
linux内核根文件系统 浏览:240
3d的命令面板不见了 浏览:523
武汉理工大学服务器ip地址 浏览:146
亚马逊云服务器登录 浏览:521
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:928
php支持curlhttps 浏览:142
新预算法责任 浏览:443
服务器如何处理5万人同时在线 浏览:249
哈夫曼编码数据压缩 浏览:424
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:616
解压手机软件触屏 浏览:348