Ⅰ 常见的搜索算法有哪几种
广度优先搜索(BFS)
深度优先搜索(DFS)
爬山法(Hill Climbing)
最佳优先算法(Best-first search strategy)
回溯法 (Backtracking)
分支限界算法(Branch-and-bound Search Algorithm)
Ⅱ 求助:二分查找算法流程图,在Raptor中实现该算法
二分查找算法流程图,实现核算法
Ⅲ 百度搜索引擎工作原理是什么,试写出流程
你好!
搜索引擎的工作原理包括如下三个过程:首先在互联中发现、搜集网页信息;同时对信息进行提取和组织建立索引库;再由检索器根据用户输入的查询关键字,在索引库中快速检出文档,进行文档与查询的相关度评价,对将要输出的结果进行排序,并将查询结果返回给用户。
1、抓取网页。每个独立的搜索引擎都有自己的网页抓取程序(spider)。Spider顺着网页中的超链接,连续地抓取网页。被抓取的网页被称之为网页快照。由于互联网中超链接的应用很普遍,理论上,从一定范围的网页出发,就能搜集到绝大多数的网页。
发现、抓取网页信息需要有高性能的“网络蜘蛛”程序(Spider)去自动地在互联网中搜索信息。一个典型的网络蜘蛛工作的方式,是查看一个页面,并从中找到相关信息,然后它再从该页面的所有链接中出发,继续寻找相关的信息,以此类推,直至穷尽。网络蜘蛛要求能够快速、全面。网络蜘蛛为实现其快速地浏览整个互联网,通常在技术上采用抢先式多线程技术实现在网上聚集信息。通过抢先式多线程的使用,你能索引一个基于URL链接的Web页面,启动一个新的线程跟随每个新的URL链接,索引一个新的URL起点。当然在服务器上所开的线程也不能无限膨胀,需要在服务器的正常运转和快速收集网页之间找一个平衡点。在算法上各个搜索引擎技术公司可能不尽相同,但目的都是快速浏览Web页和后续过程相配合。目前国内的搜索引擎技术公司中,比如网络公司的网络蜘蛛采用了可定制、高扩展性的调度算法使得搜索器能在极短的时间内收集到最大数量的互联网信息,并把所获得的信息保存下来以备建立索引库和用户检索。
2、处理网页。搜索引擎抓到网页后,还要做大量的预处理工作,才能提供检索服务。其中,最重要的就是提取关键词,建立索引库和索引。其他还包括去除重复网页、分词(中文)、判断网页类型、分析超链接、计算网页的重要度/丰富度等。
索引库的建立关系到用户能否最迅速地找到最准确、最广泛的信息,同时索引库的建立也必须迅速,对网络蜘蛛抓来的网页信息极快地建立索引,保证信息的及时性。对网页采用基于网页内容分析和基于超链分析相结合的方法进行相关度评价,能够客观地对网页进行排序,从而极大限度地保证搜索出的结果与用户的查询串相一致。新浪搜索引擎对网站数据建立索引的过程中采取了按照关键词在网站标题、网站描述、网站URL等不同位置的出现或网站的质量等级等建立索引库,从而保证搜索出的结果与用户的查询串相一致。新浪搜索引擎在索引库建立的过程中,对所有数据采用多进程并行的方式,对新的信息采取增量式的方法建立索引库,从而保证能够迅速建立索引,使数据能够得到及时的更新。
3、提供检索服务。用户输入关键词进行检索,搜索引擎从索引数据库中找到匹配该关键词的网页;为了用户便于判断,除了网页标题和URL外,还会提供一段来自网页的摘要以及其他信息。
用户检索的过程是对前两个过程的检验,检验该搜索引擎能否给出最准确、最广泛的信息,检验该搜索引擎能否迅速地给出用户最想得到的信息。对于网站数据的检索,新浪搜索引擎采用多进程的方式在索引库中检索,大大减少了用户的等待时间,并且在用户查询高峰时服务器的负担不会过高(平均的检索时间在0.3秒左右)。对于网页信息的检索,作为国内众多门户网站的网页检索技术提供商的网络公司其搜索引擎运用了先进的多线程技术,采用高效的搜索算法和稳定的UNIX平台,因此可大大缩短对用户搜索请求的响应时间。作为慧聪I系列应用软件产品之一的I-Search2000采用的超大规模动态缓存技术,使一级响应的覆盖率达到75%以上,独有的自学能力可自动将二级响应的覆盖率扩充到20%以上。
我现在是在搜外网上学习,他们网站上有很多免费的视频教程可以学,建议去看看!
Ⅳ 搜索引擎的排序算法都有哪些是怎么实现的
搜索引擎的排序算法:
词频统计——词位置加权的搜索引擎
关键词在文档中词频越高,出现的位置越重要,则被认为和检索词的相关性越好。
1)词频统计
2)词位置加权
2.2基于链接分析排序的第二代搜索引擎
1)PageRank算法
PageRank算法的基本思想是:页面的重要程度用PageRank值来衡量,PageRank值主要体现在两个方面:引用该页面的页面个数和引用该页面的页面重要程度。
其计算公式为:
PR(A):页面A的PageRank值;
d:阻尼系数,由于某些页面没有入链接或者出链接,无法计算PageRank值,为避免这个问题(即LinkSink问题),而提出的。阻尼系数常指定为0.85。
R(Pi):页面Pi的PageRank值;
C(Pi):页面链出的链接数量;
2)Topic-Sensitive PageRank算法
3)HillTop算法
HillTop算法通过不同等级的评分确保了评价结果对关键词的相关性,通过不同位置的评分确保了主题(行业)的相关性,通过可区分短语数防止了关键词的堆砌。
4)HITS
HITS算法只计算主特征向量,处理不好主题漂移问题;其次,进行窄主题查询时,可能产生主题泛化问题;因此可据LIngmao了解看待,找寻适合的算法
Ⅳ 算法流程图怎么画
算法流程图绘制方法:
1、根据具体的步骤先画出流程图的形状,然后在里面填上事情的发展顺序;
2、在纸上的画法是一样的,先根据事情的发展顺序画出具体的图案,然后在里面填上事情的发展顺序;
3、在电脑上操作比较简单,数据也比较清晰,在纸上画电脑的流程图的时候先将具体的数据分析清楚之后在按照步骤画出来。
流程在画的时候非常的考验人的数字总结能力,需要有清晰的逻辑将事物的发展过程叙述清楚,再将整个事件总结成几个主要的过程,根据过程的条数在电脑上面画出具体的发展流程。
一般在电脑上的流程图画起来比较方便,因为在电脑上操作的时候一些数据可以直接从上面计算。先总结出开始和结尾的具体过程,总结好之后在电脑上面画出具体的流程图图标,将事情的发展经过填到图标里面,流程图在做的时候还要有很好的思维发散能力,根据具体发生的某一件事,做出事情的原因,经过,预测的结果。
手绘流程图过程和电脑上一样,都是需要思考过事情的起因,经过,结果,将发展过程画在纸上就可以,画的时候注意事情的发展顺序不要出现错误。
(5)搜索的算法流程图扩展阅读:
算法流程图的基本结构:
1、顺序结构
顺序结构是最简单的一种基本结构。
2、选择结构
根据给定的条件p是否成立而选择执行A和B。p条件可以是“x>0”或“x>y”等。注意,无论p条件是否成立,只能执行A或B之一,不可能既执行A又执行B。无论走哪一条路径,在执行完A或B之后将脱离选择结构。A或B两个框中可以有一个是空的,即不执行任何操作。
3、循环结构
又称重复结构,即反复执行某一部分的操作。有两类循环结构:
当型(While):当给定的条件p成立时,执行A框操作,然后再判断p条件是否成立。如果仍然成立,再执行A框,如此反复直到p条件不成立为止。此时不执行A框而脱离循环结构。
直到型(Until):先执行A框,然后判断给定的p条件是否成立。如果p条件不成立,则再执行A,然后再对p条件作判断。如此反复直到给定的p条件成立为止。此时脱离本循环结构。
Ⅵ 计算机搜索算法的一般过程是什么
一般采用的都是二分查找吧,时间复杂度O(log n),算是比较快的了。
不过我也不太确定,你可以F12进去查看页面源代码分析一下。
Ⅶ 想要流程图
图的遍历
从图中某一顶点出发访遍图中其余顶点,且使每一顶点仅被访问一次。这一过程叫做图的遍历。
遍历图的基本方法有两种:深度优先搜索和广度优先搜索。这两种方法都适用于有向图和无向图。
和树的遍历类似,图的遍历也是从某个顶点出发,沿着,某条边搜索路径对图中所有顶点各作一次访问。若给定的图是连通图,则从图中任意顶点出发顺着边可以访问到该图中所有的顶点,然而,图的遍历比树的遍历复杂得多,这是因为图中的任一点都可能和其余顶点相邻接,故在访问了某个顶点之后,可能顺着某条回路又到了该顶点。为了避免重复访问同一个顶点,必须记住每个顶点是否被访问过。为此,可设置一个布尔向量visited[1..n],它的初值为false,一旦访问了顶点vi,便将visited[i]置为ture。
一、连通图的深度优先搜索
连通图深度优先搜索的基本思想如下:假定图中某个顶点v1为出发点,首先访问出发点v1,然后任选一个v1的访问过的邻接点v2,以v2为新的出发点继续进行深度优先搜索,直至图中所有顶点被访问过。
显然,图的深度优先搜索是一个递归过程,类似于树的前序遍历,它的特点是尽可能先对纵深方向进行搜索,故称之深度优先搜索。
现以图5-10中G为例说明深度优搜索过程。假定v1是出发点,首先访问v1。因v1有两个邻接点v2、v3均未被访问,选择v2作为新的出发点。访问v2之后,再找v2的未访问过的邻接点。同v2邻接的有v1、v4、v5,其中v1以被访问过,而v4、v5未被访问。选择v4作为新的出发点。重复上述搜索过程继续依次访问v8、v5。访问v5之后,由于与v5相邻的顶点均以被访问,搜索退回到v8。由于v8、v4、v2都没有未被访问的邻接点,所以搜索过程连续地从v8退回到v4,再退回到v2最后退回到v1这时选择v1的未被访问过的邻接点v3,继续往下搜索,依次访问v3、v6、v7,从而遍历了图中全部顶点。在这个过程中得到的顶点的访问序列:
(a)无向图G
(b)G的深度优先搜索过程
图5-10a 深度优先搜索过程示例
v1→v2→v4→v8→v5→v3→v6→v7
这样的序列就称之为图的深度优先搜索遍历序列。
连通图的深度优先搜索的非形式算法如下:
procere dfs (g:graph;v1:integer);
//从v1出发深度优先遍历图g//
begin write(v1);
visited[v1]:=ture;
找出g中v1的第一邻接点w;
while w存在do
[ if w 未被访问 then dfs(g,w);
w:=g中v1的下一邻接点]
end;
上述非行式算法未涉及图的存储结构.图的遍历过程必然地包含对图中每个顶点查找其邻接点这一操作;而在图的不同存储结构上查找邻接点的方法是不同的.
若以邻接表为存储结构,查找邻接点操作实际上是顺序查找链表.邻接表上的深度优先算法如下:
procere dfs(g:adj_list;v1:integer);
//从v1出发深度优先遍历图g.g以邻接表为存储结构//
begin write(v1);
visited[v1]:=ture;//标志v1已访问//
p=g[v1].link;//找v1的第一个邻接点//
while p<>nil do
[ if not (visited[p↑.adjvex]);//书错写成vertex//
then dfs(g,p↑.adjvex);
p:=p↑.next]//回溯----找v1的下一个邻接点//
end;
二、连通图的广度优先搜索
连通图广度优先搜索的基本思想是:从图中某个顶点v1出发,访问了v1之后依次访问v1的所有邻接点;然后分别从这些邻接点出发按深度优先搜索遍历图的其它顶点,直至所有顶点都被访问到。它类似于树的按层次遍历,其特点是尽可能优先对横向搜索,故称之为广度优先搜索。
下面以图5-10中G为例说明广度优先搜索的过程。首先从起点v1出发,访问v1。v1有两个未曾访问的邻接点v2和v3。先访问v2,再访问v3。然后再先后访问v2的未曾访问过的邻接点v4、v5及v3的未曾访问过的邻接点v6、v7。最后访问v4的未曾访问过的邻接点v8。至此图中所有顶点均以被访问到。得到的顶点访问序列为:
(a)无向图G
(b)G的广度优先搜索过程
图5-10b 广度优先搜索过程示例
v1→v2→v3→v4→v5→v6→v7→v8
相应的,这样的序列就称之为图的广度优先搜索遍历序列。
在广度优先搜索中,若对x的访问先于y,则对x邻接点的访问也先于队y的邻接点的访问。因此,可采用队列来暂存那些刚访问过,但可能还有为访问过的邻接点的顶点。
连通图的广度优先搜索算法如下:
procere bfs(g:adj_list;v1:integer);//书错写成adjlist//
//以邻接表为存储结构的广度优先搜索。Q为队列,假定visited的各分量已只置 为false//
begin init_linkedque(Q);//设计一个空队Q//
visited[v1]:=ture;write(v1);
in_limkedque(Q,v1); //v1入队//
while not empty(Q) do
[ v:=out_linkedque(Q);
p:=adj_list[v].link;//书错写成adjlist//
while p<>nil do
[ if visited[p↑.adjvex]:=false;//书错写成vertex//
then
[visited[p↑.adjvex]:=ture;
with(p↑.adjvex);
in_linkedque(Q,p↑.adjvex);]
p:=p↑.next]]
end;
三、图的连通分量计算
如果要遍历一个非连通图,则需要多次调用dfs或bfs,每一次都要得到一个连通分量;调用dfs或bfs的次数就是连通分量的个数。因此很容易写出非连通图的遍历算法和计算一个图的连通分量得算法。下面给出的是以邻接表为存储结构,通过调用深度优先搜索算法实现的计算连通分量的算法。
procee conn_component (var g:graph;
var visited:array[1..vnum);
begin for v:=1 to vnum do
visited[v]:flase;
count:=0;
for v:=1 to vnum do
if not(visited[v])then
[count:=count+1;
write('component',count,':');
dfs(g,v);writeln;]
end;
对于图5-5中非连通图G3,用上述算法可求出3个连通分量,各连通分量所含顶点如下:
component1: 1 2 3
component2: 4 5 6 7
component3: 8 9
注意,若从上述算法中删去有关连通分量计数器的操作,就得到一个非连通图德遍历算法。
详细资料和图片请参看参考资料,那里的比较详细
Ⅷ 搜索算法的运算原理
搜索算法实际上是根据初始条件和扩展规则构造一棵“解答树”并寻找符合目标状态的节点的过程。所有的搜索算法从最终的算法实现上来看,都可以划分成两个部分——控制结构(扩展节点的方式)和产生系统(扩展节点),而所有的算法优化和改进主要都是通过修改其控制结构来完成的。其实,在这样的思考过程中,我们已经不知不觉地将一个具体的问题抽象成了一个图论的模型——树,即搜索算法的使用第一步在于搜索树的建立。
由图一可以知道,这样形成的一棵树叫搜索树。初始状态对应着根结点,目标状态对应着目标结点。排在前的结点叫父结点,其后的结点叫子结点,同一层中的结点是兄弟结点,由父结点产生子结点叫扩展。完成搜索的过程就是找到一条从根结点到目标结点的路径,找出一个最优的解。这种搜索算法的实现类似于图或树的遍历,通常可以有两种不同的实现方法,即深度优先搜索(DFS——Depth First search)和广度优先搜索(BFS——Breadth First Search)。