导航:首页 > 源码编译 > lean编译详细教程

lean编译详细教程

发布时间:2022-07-23 23:06:38

‘壹’ 用vc建立windows32api程序,编译时显示不能打开头文件windows.h 怎么弄

自己找到include 文件夹 新建个 txt文件 名字改成 windows.h
然后复制 粘贴进去保存

/*++ BUILD Version: 0001 Increment this if a change has global effects

Copyright (c) 1985-1997, Microsoft Corporation

Mole Name:

windows.h

Abstract:

Master include file for Windows applications.

--*/

#ifndef _WINDOWS_
#define _WINDOWS_

#ifndef WINVER
#define WINVER 0x0400
#else
#if defined(_WIN32_WINNT) && (WINVER < 0x0400) && (_WIN32_WINNT > 0x0400)
#error WINVER setting conflicts with _WIN32_WINNT setting
#endif
#endif

#if(WINVER >= 0x0500)
#pragma message ("")
#pragma message ("NOTE: WINVER has been defined as 0x0500 or greater which enables")
#pragma message ("Windows NT 5.0 and Windows 98 features. When these headers were released,")
#pragma message ("Windows NT 5.0 beta 1 and Windows 98 beta 2.1 were the current versions.")
#pragma message ("")
#pragma message ("For this release when WINVER is defined as 0x0500 or greater, you can only")
#pragma message ("build beta or test applications. To build a retail application,")
#pragma message ("set WINVER to 0x0400 or visit http://www.microsoft.com/msdn/sdk")
#pragma message ("to see if retail Windows NT 5.0 or Windows 98 headers are available.")
#pragma message ("")
#pragma message ("See the SDK release notes for more information.")
#pragma message ("")
#endif

#ifndef _INC_WINDOWS
#define _INC_WINDOWS

#if defined (_MSC_VER) && (_MSC_VER >= 1020)
#pragma once
#endif

/* If defined, the following flags inhibit definition
* of the indicated items.
*
* NOGDICAPMASKS - CC_*, LC_*, PC_*, CP_*, TC_*, RC_
* NOVIRTUALKEYCODES - VK_*
* NOWINMESSAGES - WM_*, EM_*, LB_*, CB_*
* NOWINSTYLES - WS_*, CS_*, ES_*, LBS_*, SBS_*, CBS_*
* NOSYSMETRICS - SM_*
* NOMENUS - MF_*
* NOICONS - IDI_*
* NOKEYSTATES - MK_*
* NOSYSCOMMANDS - SC_*
* NORASTEROPS - Binary and Tertiary raster ops
* NOSHOWWINDOW - SW_*
* OEMRESOURCE - OEM Resource values
* NOATOM - Atom Manager routines
* NOCLIPBOARD - Clipboard routines
* NOCOLOR - Screen colors
* NOCTLMGR - Control and Dialog routines
* NODRAWTEXT - DrawText() and DT_*
* NOGDI - All GDI defines and routines
* NOKERNEL - All KERNEL defines and routines
* NOUSER - All USER defines and routines
* NONLS - All NLS defines and routines
* NOMB - MB_* and MessageBox()
* NOMEMMGR - GMEM_*, LMEM_*, GHND, LHND, associated routines
* NOMETAFILE - typedef METAFILEPICT
* NOMINMAX - Macros min(a,b) and max(a,b)
* NOMSG - typedef MSG and associated routines
* NOOPENFILE - OpenFile(), OemToAnsi, AnsiToOem, and OF_*
* NOSCROLL - SB_* and scrolling routines
* NOSERVICE - All Service Controller routines, SERVICE_ equates, etc.
* NOSOUND - Sound driver routines
* NOTEXTMETRIC - typedef TEXTMETRIC and associated routines
* NOWH - SetWindowsHook and WH_*
* NOWINOFFSETS - GWL_*, GCL_*, associated routines
* NOCOMM - COMM driver routines
* NOKANJI - Kanji support stuff.
* NOHELP - Help engine interface.
* NOPROFILER - Profiler interface.
* NODEFERWINDOWPOS - DeferWindowPos routines
* NOMCX - Modem Configuration Extensions
*/

#if defined(RC_INVOKED) && !defined(NOWINRES)

#include <winresrc.h>

#else

#if defined(RC_INVOKED)
/* Turn off a bunch of stuff to ensure that RC files compile OK. */
#define NOATOM
#define NOGDI
#define NOGDICAPMASKS
#define NOMETAFILE
#define NOMINMAX
#define NOMSG
#define NOOPENFILE
#define NORASTEROPS
#define NOSCROLL
#define NOSOUND
#define NOSYSMETRICS
#define NOTEXTMETRIC
#define NOWH
#define NOCOMM
#define NOKANJI
#define NOCRYPT
#define NOMCX
#endif

#if !defined(_68K_) && !defined(_MPPC_) && !defined(_PPC_) && !defined(_ALPHA_) && !defined(_MIPS_) && !defined(_X86_) && defined(_M_IX86)
#define _X86_
#endif

#if !defined(_68K_) && !defined(_MPPC_) && !defined(_PPC_) && !defined(_ALPHA_) && !defined(_X86_) && !defined(_MIPS_) && defined(_M_MRX000)
#define _MIPS_
#endif

#if !defined(_68K_) && !defined(_MPPC_) && !defined(_PPC_) && !defined(_ALPHA_) && !defined(_X86_) && !defined(_MIPS_) && defined(_M_ALPHA)
#define _ALPHA_
#endif

#if !defined(_68K_) && !defined(_MPPC_) && !defined(_PPC_) && !defined(_ALPHA_) && !defined(_X86_) && !defined(_MIPS_) && defined(_M_PPC)
#define _PPC_
#endif

#if !defined(_68K_) && !defined(_MPPC_) && !defined(_PPC_) && !defined(_ALPHA_) && !defined(_X86_) && !defined(_MIPS_) && defined(_M_M68K)
#define _68K_
#endif

#if !defined(_68K_) && !defined(_MPPC_) && !defined(_PPC_) && !defined(_ALPHA_) && !defined(_X86_) && !defined(_MIPS_) && defined(_M_MPPC)
#define _MPPC_
#endif

#ifndef _MAC
#if defined(_68K_) || defined(_MPPC_)
#define _MAC
#endif
#endif

#ifndef RC_INVOKED
#if ( _MSC_VER >= 800 )
#pragma warning(disable:4001)
#pragma warning(disable:4201)
#pragma warning(disable:4214)
#pragma warning(disable:4514)
#endif
#include <excpt.h>
#include <stdarg.h>
#endif /* RC_INVOKED */

#include <windef.h>
#include <winbase.h>
#include <wingdi.h>
#include <winuser.h>
#ifdef _MAC
DECLARE_HANDLE(HKEY);
typedef HKEY *PHKEY;
#endif
#if !defined(_MAC) || defined(_WIN32NLS)
#include <winnls.h>
#endif
#ifndef _MAC
#include <wincon.h>
#include <winver.h>
#endif
#if !defined(_MAC) || defined(_WIN32REG)
#include <winreg.h>
#endif
#ifndef _MAC
#include <winnetwk.h>
#endif

#ifndef WIN32_LEAN_AND_MEAN
#include <cderr.h>
#include <dde.h>
#include <ddeml.h>
#include <dlgs.h>
#ifndef _MAC
#include <lzexpand.h>
#include <mmsystem.h>
#include <nb30.h>
#include <rpc.h>
#endif
#include <shellapi.h>
#ifndef _MAC
#include <winperf.h>

#if(_WIN32_WINNT >= 0x0400)
#include <winsock2.h>
#include <mswsock.h>
#else
#include <winsock.h>
#endif /* _WIN32_WINNT >= 0x0400 */

#endif
#ifndef NOCRYPT
#include <wincrypt.h>
#endif

#ifndef NOGDI
#include <commdlg.h>
#ifndef _MAC
#include <winspool.h>
#ifdef INC_OLE1
#include <ole.h>
#else
#include <ole2.h>
#endif /* !INC_OLE1 */
#endif /* !MAC */
#endif /* !NOGDI */
#endif /* WIN32_LEAN_AND_MEAN */

#ifdef _MAC
#include <winwlm.h>
#endif

#ifdef INC_OLE2
#include <ole2.h>
#endif /* INC_OLE2 */

#ifndef _MAC
#ifndef NOSERVICE
#include <winsvc.h>
#endif

#if(WINVER >= 0x0400)
#ifndef NOMCX
#include <mcx.h>
#endif /* NOMCX */

#ifndef NOIME
#include <imm.h>
#endif
#endif /* WINVER >= 0x0400 */
#endif

#ifndef RC_INVOKED
#if ( _MSC_VER >= 800 )
#pragma warning(default:4001)
#pragma warning(default:4201)
#pragma warning(default:4214)
/* Leave 4514 disabled. It's a stupid warning anyway. */
#endif
#endif /* RC_INVOKED */

#endif /* RC_INVOKED */

#endif /* _INC_WINDOWS */
#endif /* _WINDOWS_ */

‘贰’ vs2008添加预编译命令

以预编译头文件为Stdafx.h为例:
Qt Creator中很简单,只需在.pro文件中加入一行PRECOMPILED_HEADER = stdafx.h
VS2008在工程中在Stdafx.h文件上右键propertis-Configuration Properties-C/C++-Precompiled Headers-Create/Use Precompiled Header中选择Create Precompiled Header(/y).
有一点注意的是,在工程Generated Filed中的moc相关文件也需要选上Use Precompiled Header (/Yu).

‘叁’ android性能测试工具有哪些

大概有如下几个工具:
android针对上面这些会影响到应用性能的情况提供了一些列的工具:
1 布局复杂度:
hierarchyviewer:检测布局复杂度,各视图的布局耗时情况:

Android开发者模式—GPU过渡绘制:

2 耗电量:Android开发者模式中的电量统计;
3 内存:
应用运行时内存使用情况查看:Android Studio—Memory/CPU/GPU;

内存泄露检测工具:DDMS—MAT;
4 网络:Android Studio—NetWork;
5 程序执行效率:
静态代码检查工具:Android studio—Analyze—Inspect Code.../Code cleanup... ,用于检测代码中潜在的问题、存在效率问题的代码段并提供改善方案;
DDMS—TraceView,用于查找程序运行时具体耗时在哪;
StrictMode:用于查找程序运行时具体耗时在哪,需要集成到代码中;
Andorid开发者模式—GPU呈现模式分析。
6 程序稳定性:monkey,通过monkey对程序在提交测试前做自测,可以检测出明显的导致程序不稳定的问题,执行monkey只需要一行命令,提交测试前跑一次可以避免应用刚提交就被打回的问题。
说明:
上面提到的这些工具可以进Android开发者官网性能工具介绍查看每个工具的介绍和使用说明;

Android开发者选项中有很多测试应用性能的工具,对应用性能的检测非常有帮助,具体可以查看:All about your phone's developer options和15个必知的Android开发者选项对Android开发者选项中每一项的介绍;

针对Android应用性能的优化,Google官方提供了一系列的性能优化视频教程,对应用性能优化具有非常好的指导作用,具体可以查看:优酷Google Developers或者Android Performance Patterns。

二 第三方性能优化工具介绍
除了android官方提供的一系列性能检测工具,还有很多优秀的第三方性能检测工具使用起来更方便,比如对内存泄露的检测,使用leakcanry比MAT更人性化,能够快速查到具体是哪存在内存泄露。
leakcanary:square/leakcanary · GitHub,通过集成到程序中的方式,在程序运行时检测应用中存在的内存泄露,并在页面中显示,在应用中集成leancanry后,程序运行时会存在卡顿的情况,这个是正常的,因为leancanry就是通过gc操作来检测内存泄露的,gc会知道应用卡顿,说明文档:LeakCanary 中文使用说明、LeakCanary: 让内存泄露无所遁形。
GT:GT Home,GT是腾讯开发的一款APP的随身调测平台,利用GT,可以对CPU、内存、流量、点亮、帧率/流畅度进行测试,还可以查看开发日志、crash日志、抓取网络数据包、APP内部参数调试、真机代码耗时统计等等,需要说明的是,应用需要集成GT的sdk后,GT这个apk才能在应用运行时对各个性能进行检测。

‘肆’ vs2010如何编译驱动

1、安装VS2010,安装WDK 7.0(DDK);

2、新建VC++->Empty Project

3、打开Configuration Manager 并新建一个名称为“ dirver ”的Solution Configuration 并将“dirver” 设为Active Solution Configuration .

4、打开View-> property Manager。

5、在"dirver" solution configuration 上点击右键,选择Add new property Sheet。取名为“dirverProperty”. 并对他进下以下设置。

5.1. C\C++ - General - Debug Information Format = Program Database (/Zi)
5.2. C\C++ - Preprocessor - Preprocessor Definitions = _X86_ [add also DBG for Debug config]
【WIN32;_DEBUG;_X86_;i386;STD_CALL;CONDITION_HANDLING;WIN32_LEAN_AND_MEAN;NT_UP;SRVDBG;DBG;_IDWBUILD;_WIN32_WINNT=0x0400;% (PreprocessorDefinitions)】
5.3. C\C++ - Code Generation - Enable C++ Exceptions = No
5.4. C\C++ - Code Generation - Basic Runtime Checks = Default
5.5. C\C++ - Code Generation - Buffer Security Check = No (/GS-)
5.6. C\C++ - Advanced - Calling Convention = __stdcall (/Gz)
5.7. C\C++ - Advanced - Compile As = Compile as C Code (/TC) [if you are going to use plain C]
5.8. Linker - General - Output File = $(OutDir)\$(ProjectName).sys
5.9. Linker - General - Enable Incremental Linking = Default
5.10. Linker - Input - Additional Dependencies = ntoskrnl.lib hal.lib $(NOINHERIT) [add here needed libs here e.g. ntoskrnl.lib hal.lib]
【不知道上面是不是笔误,应该为:ntoskrnl.lib;hal.lib;%(AdditionalDependencies)】
5.11. Linker - Input - Ignore All Default Libraries = Yes (/NODEFAULTLIB)
5.12. Linker - Manifest File - Generate Manifest = No
5.13. Linker - System - SubSystem = Native (/SUBSYSTEM:NATIVE)
5.14. Linker - System - Driver = Driver (/DRIVER)
5.15. Linker - Advanced - Entry Point = DriverEntry
5.16. Linker - Advanced - Base Address = 0x10000
5.17. Linker - Advanced - Randomized Base Address = Disable (/DYNAMICBASE:NO)
【这个也是错误的:应该置空】
5.18. Linker - Advanced - Data Execution Prevention (DEP) = Disable (/NXCOMPAT:NO)
【这个也是错误的:应该置空】

6. Config VC++ Directories
6.1 Open Open up property manager by clicking on Menu View->Property Manager.
6.2 Expand the project node and then the Configuration|Platform nodes, you will see "Microsoft.cpp.<Platform>.users" file for each Configuration|Platform. These are the files

for the global settings, similar to the old tools/Options/VC++ Directories.
6.3 Multi-Select "Microsoft.cpp.<Platform>.users", right click and bring up the property page window
6.4 In the property page window, click on "VC++ Directories" (for example) in the left pane, add new paths for the directories such as "Include Directories". separated by

semicolons
(eg:Include Directories config As:
$(ddkroot)\INC
$(ddkroot)\INC\WNET
$(ddkroot)\INC\DDK\WNET
Library Directories config As:
$(ddkroot)\LIB\WNET\I386
)
6.5 Make sure to save the settings before shutting down Visual Studio.
6.6 Re-launch Visual Studio and the new settings will be in effect.
6.7 Note: If you would like to only change the settings for one project, you can right click on the project and bring up the property page. Change the settings for “VC++

Directories”, these settings will be persisted to the project file.
七. OK. Have done. Now you can test it with simple code, e.g.:

#include "ntddk.h"

NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject,PUNICODE_STRING RegistryPath)
{
return STATUS_UNSUCCESSFUL;
}

特别说明:
1.
Visual Studio 2010 在智能设备开发方面只支持Windows Phone OS 7.0。如果你要为Windows CE 5.0和Windows Mobile 6.5开发应用程序,请安装Visual Studio 2008。
2.
做驱动开发时,SDK的版本要和WDK的版本一致,即Win7 WDK要配Win7 SDK,否则会出现编译错误。VS2010里集成了Windows SDK 7.0A。
3.
如果出现类似如下编译错误,解决方法是:拷贝C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\include\sal.h,然后覆盖掉C:\WinDDK\7600.16385.1\inc\api\sal.h。

C:\Program Files\Microsoft Visual Studio 10.0\VC\include\crtdefs.h(550): error C2143: syntax error : missing ')' before 'const'
C:\Program Files\Microsoft Visual Studio 10.0\VC\include\crtdefs.h(550): error C2143: syntax error : missing '{' before 'const'
.......

‘伍’ 有没有人成功编译过LEAN大的LEDE

按照错误提示,"试图加载重复的模块"。
它指出,在文件config_PA_thir.c(或者.asm...,这个你自己看一下),模块PA_CONF_FIR就是那个有问题的模块。

‘陆’ 什么是JIT

准时生产方式(Just In Time简称JIT),是日本丰田汽车公司在20世纪60年代实行的一种生产方式,1973年以后,这种方式对丰田公司渡过第一次能源危机起到了突出的作用,后引起其它国家生产企业的重视,并逐渐在欧洲和美国的日资企业及当地企业中推行开来,现在这一方式与源自日本的其它生产、流通方式一起被西方企业称为“日本化模式”,其中,日本生产、流通企业的物流模式对欧美的物流产生了重要影响,近年来,JIT不仅作为一种生产方式,也作为一种通用管理模式在物流、电子商务等领域得到推行。
在20世纪后半期,整个汽车市场进入了一个市场需求多样化的新阶段,而且对质量的要求也越来越高,随之给制造业提出的新课题即是,如何有效地组织多品种小批量生产,否则的话,生产过剩所引起的只是设备、人员、非必须费用等一系列的浪费,从而影响到企业的竞争能力以至生存。在这种历史背景下,1953年,日本丰田公司的副总裁大野耐一综合了单件生产和批量生产的特点和优点,创造了一种在多品种小批量混合生产条件下高质量、低消耗的生产方式即准时生产。准时制指的是,将必要的零件以必要的数量在必要的时间送到生产线,并且只将所需要的零件、只以所需要的数量、只在正好需要的时间送到生产。这是为适应20世纪60年代消费需要变得多样化、个性化而建立的一种生产体系及为此生产体系服务的物流体系。
[编辑本段]
【准时制核心思想】
在准时制生产方式倡导以前,世界汽车生产企业包括丰田公司均采取福特式的“总动员生产方式”,即一半时间人员和设备、流水线等待零件,另一半时间等零件一运到,全体人员总动员,紧急生产产品。这种方式造成了生产过程中的物流不合理现象,尤以库存积压和短缺为特征,生产线或者不开机,或者开机后就大量生产,这种模式导致了严重的资源浪费。丰田公司的准时制采取的是多品种少批量、短周期的生产方式,实现了消除库存,优化生产物流,减少浪费目的。
准时生产方式基本思想可概括为“在需要的时候,按需要的量生产所需的产品”,也就是通过生产的计划和控制及库存的管理,追求一种无库存,或库存达到最小的生产系统。准时生产方式的核心是追求一种无库存的生产系统,或使库存达到最小的生产系统。为此而开发了包括“看板””在内的一系列具体方法,并逐渐形成了一套独具特色的生产经营体系。
准时制生产方式以准时生产为出发点,首先暴露出生产过量和其他方面的浪费,然后对设备、人员等进行淘汰、调整,达到降低成本、简化计划和提高控制的目的。在生产现场控制技术方面,准时制的基本原则是在正确的时间,生产正确数量的零件或产品,即时生产。它将传统生产过程中前道工序向后道工序送货,改为后道工序根据“看板”向前道工序取货,看板系统是准时制生产现场控制技术的核心,但准时制不仅仅是看板管理。
[编辑本段]
【对生产制造的影响】
1.生产流程化
即按生产汽车所需的工序从最后一个工序开始往前推,确定前面一个工序的类别,并依次的恰当安排生产流程,根据流程与每个环节所需库存数量和时间先后来安排库存和组织物流。尽量减少物资在生产现场的停滞与搬运,让物资在生产流程上毫无阻碍地流动。
“在需要的时候,按需要的量生产所需的产品”。对于企业来说,各种产品的产量必须能够灵活地适应市场需要量的变比。众所周知,生产过剩会引起人员、设备、库存费用等一系列的浪费。避免这些浪费的手段就是实施适时适量生产,只在市场需要的时候生产市场需要的产品。
为了实现适时适量生产,首先需要致力于生产的同步化。即工序间不设置仓库,前一工序的加工结束后,使其立即转到下一工序去,装配线与机械加工几乎平行进行。在铸造、锻造、冲压等必须成批生产的工序,则通过尽量缩短作业更换时间来尽量缩小生产批量。生产的同步化通过“后工序领取”这样的方法来实现。 “后工序只在需要的时间到前工序领取所需的加工品;前工序中按照被领取的数量和品种进行生产。”这样,制造工序的最后一道即总装配线成为生产的出发点,生产计划只下达给总装配线,以装配为起点,在需要的时候,向前工序领取必要的加工品,而前工序提供该加工品后,为了补充生产被领走的量,必向再前道工序领取物料,这样把各个工序都连接起来,实现同步化生产。
这样的同步化生产还需通过采取相应的设备配置方法以及人员配置方法来实现。即不能采取通常的按照车、铣、刨等工业专业化的组织形式,而按照产品加工顺序来布置设备。这样也带来人员配置上的不同作法:弹性配置作业人数。降低劳动费用是降低成本的一个重要方面,达到这一目的的方法是“少人化”。所谓少人化,是指根据生产量的变动,弹性地增减各生产线的作业人数,以及尽量用较少的人力完成较多的生产。这里的关键在于能否将生产量减少了的生产线上的作业人员数减下来。具体方法是实施独特的设备布置,以便能够在需求减少时,将作业所减少的工时集中起来,以整顿削减人员。但这从作业人员的角度来看,意味着标准作业中的作业内容、范围、作业组合以及作业顺序等的一系列变更。因此为了适应这种变更,作业人员必须是具有多种技能的“多面手”。
2.生产均衡化
生产均衡化是实现适时适量生产的前提条件。所谓生产的均衡化,是指总装配线在向前工序领取零部件时应均衡地使用各种零部件,生产各种产品。为此在制定生产计划时就必须加以考虑,然后将其体现于产品生产顺序计划之中。在制造阶段,均衡化通过专用设备通用化和制定标准作业来实现。所谓专用设备通用化,是指通过在专用设备上增加一些工夹具的方法使之能够加工多种不同的产品。标准作业是指将作业节拍内一个作业人员所应担当的一系列作业内容标准化。
生产中将一周或一日的生产量按分秒时间进行平均,所有生产流程都按此来组织生产,这样流水线上每个作业环节上单位时间必须完成多少何种作业就有了标准定额,所在环节都按标准定额组织生产,因此要按此生产定额均衡地组织物质的供应、安排物品的流动。因为JIT生产方式的生产是按周或按日平均,所以与传统的大生产、按批量生产的方式不同,JIT的均衡化生产中无批次生产的概念。
标准化作业是实现均衡化生产和单件生产单件传送的又一重要前提。丰田公司的标准化作业主要是指每一位多技能作业员所操作的多种不同机床的作业程序,是指在标准周期时间内,把每一位多技能作业员所承担的一系列的多种作业标准化。丰田公司的标准化作业主要包括三个内容:标准周期时间、标准作业顺序、标准在制品存量,它们均用“标准作业组合表”来表示。
3.资源配置合理化
资源配置的合理化是实现降低成本目标的最终途径,具体指在生产线内外,所有的设备、人员和零部件都得到最合理的调配和分派,在最需要的时候以最及时的方式到位。
从设备而言,设备包括相关模具实现快速装换调整,例如,丰田公司发明并采用的设备快速装换调整的方法是SMED法。丰田公司所有大中型设备的装换调整操作均能够在10分钟之内完成,这为“多品种、小批量”的均衡化生产奠定了基础。
在生产区间,需要设备和原材料的合理放置。快速装换调整为满足后工序频繁领取零部件制品的生产要求和“多品种、小批量”的均衡化生产提供了重要的基础。但是,这种颇繁领取制品的方式必然增加运输作业量和运输成本,特别是如果运输不便,将会影响准时化生产的顺利进行。合理布置设备,特别是U型单元连结而成的“组合U型生产线”,可以大大简化运输作业,使得单位时间内零件制品运输次数增加,但运输费用并不增加或增加很少,为小批量频繁运输和单件生产单件传送提供了基础。
人员而言,多技能作业员(或称“多面手”)是指那些能够操作多种机床的生产作业工人。多技能作业员是与设备的单元式布置紧密联系的。在U型生产单元内,由于多种机床紧凑地组合在一起,这就要求并且便于生产作业工人能够进行多种机床的操作,同时负责多道工序的作业,如一个工人要会同时操作车床、铣床和磨床等。
[编辑本段]
【人力资源准时制方式的必要性】
实现人力资源的准时制至少可以给企业带来以下3个方面的好处:
1.减少人员维护成本。企业对内部员工不但要长期支付工资、福利等成本,而且要不断投入培训费用以提高和维持员工的各项技能。使用准时制人员,虽然可能一次性支出较大,但从长远观点看能节省很多成本。
2.不断吸收外部信息。通过准时制方式随时吸引外部人才的加入,能加强企业与外部的交流,及时取得各种有价值的信息,尤其是一些技术发展趋势方面的情况,往往从其他渠道难以得到。
3.集中力量于核心职能。实践证明,"大而全,小而全"的企业结构是效率低下的,目前出现的虚拟化管理的趋势,就是要把企业内部的部分职能逐渐分离出来,由社会或其他组织承担,从而使企业把非核心因素排除在企业组织之外,集中力量于企业的战略核心环节。我国进行的企业剥离部分社会职能、高校后勤社会化等一系列改革都体现了这种要求。
【人力资源准时制方式的可行性】
在计划经济体制下,人力资源管理的准时制方式是绝不可能实现的,但是随着市场经济的深入发展,准时制方式已成为可能,并且将发展成为一种常用的重要的方式。
1.随着人才市场的发展和完善,人员流动性增强,人才素质提高,从而对外部人才的可获性增强。烽火猎头认为众多的猎头公司、人才中心、咨询公司等都是可以利用的渠道,通过与这些公司的长期广泛联系,企业可以在需要的时候很容易地得到需要的人才,使准时制成为可能。尤其在我国,劳动力资源丰富的特点为企业采用准时制方式提供了资源保障。
2.用人制度的改革为JIT的实施提供方便。企业与个人之间新型的劳动合同关系消除了终身制的种种弊端,使得企业在用人方面拥有更大的主动性和灵活性。通过签订劳动合同,企业可以决定员工的聘用、待遇、绩效以及辞退等问题,也可以事先确定员工的服务时间,从而保证了准时制的顺利实施。
3.从国外经验看,准时制在人力资源管理中有着广泛的应用。在国外,早已出现的人才租赁公司为企业聘用准时制人员提供了帮助。据统计,美国约有20%的中小企业都采用人才租赁的方式,而人才租赁正是准时制一种主要方式。
[编辑本段]
【准时制人员的对象】
按照准时制的基本思想,企业中的任何人员都可能成为准时制管理的对象,只要企业出现人员需要,就要做到准时制。根据企业中各类人员的特点和作用,我们可以把准时制管理的对象分为两大类:
1.企业迫切需要的核心人员。一般来讲,企业的核心人员包括决策人员、管理人员、研究开发人员以及业务开发人员等等。这些核心人员决定了企业的综合竞争力,对于企业的生存和发展起着关键性的作用,他们是企业不可或缺的力量。因此,如果需要这部分人员,就必须及时补充,做到Just In Time.比如,由于业务扩展或人事变动,企业急需业务开发人员,人力资源管理部门就应当做到使所需人员及时到位,否则,将影响企业业务的开展。
有人认为,企业核心人员是企业的中坚力量,不应属于"随叫随到"的准时制人员。这是对准时制本质认识不清的结果,准时制要求在需要的时候提供需要的人员,并不涉及这种需要的时间长短。既然出现了对核心人员的需要,就应当使核心人员准时到位。尽管这类人员是企业长期需要的,而且也相对稳定,但其最初加入企业应当是Just In Time.
2.企业暂时需要的人员。这类人员虽然不构成企业的核心力量,但是他们的可获性将直接影响企业各项工作的顺利进行。这类人员可以是一些急需的专门人才,如产品开发人才、项目开发人才,因为这类人才只为特定产品或项目服务,企业没有必要长期拥有,因此可采用准时制方式临时雇佣,尤其对于一些中小企业,自身的技术力量不强,不能吸引或保留高层次技术人才,通过准时制方式获取外部人才将是一种理想的选择。另外,企业暂时需要的人员也可能是一些临时性或季节性工作要求的辅助人员,比如偶尔出现的货物运输、季节性的工作量增加,都需要使用准时制人员。由于这部分人员类型多、变动频繁,因此进行准时制开发的工作量相对较大,必须有科学详尽的准时制人员规划。
[编辑本段]
【准时制人员的规划】
准时制技术的一个重要特点就是严格的计划,为了适时地满足企业对人员的需要,同时又要消除人员的闲置,即不能靠大量"库存"来满足变动的需求,必须做好准时制人员的规划。一般应根据行业的商业周期或季节性规律,科学预计企业业务的发展变化对人员需求的影响,尤其是对临时需要人员的影响。
规划中,首先要确定准时制人员可能担任的工作清单,清单内容包括工作说明,工作所需的技能、知识,工作所需的方法、工具、设备,工作的质量要求,工作所需的培训时间及鉴定合格的标准等。然后根据工作清单,采取各种方式如提前招聘、租赁、兼职、顾问等,预先约定准时制人员,一旦需要就立即通知他们前来工作。如果是短期人力需求,工作结束后相应的准时制人员也结束临时聘用。
为保证准时制人员规划的顺利实施,应当建立详细的人才资源信息库,记录所有可以利用的外部人力资源,比如兼职人员、转换工作中的人士、精力充沛的退休人员、可以租赁的人才、自由职业者等等,并保持与这些人员的长期联系。人才库应当包括人员的特点、技能、爱好、联系方式、薪资要求等方面的信息,以便为企业预约准时制人员提供参考。
在人力资源开发与管理工作中,准时制既是一种技术,更是一种思想。它要求人力资源管理部门着眼于企业实际需要,周密计划、严格控制,既不能出现人员短缺,也不能有人员的闲置,这是一项非常困难而又很有意义的工作。
【准时制人员的供应商管理模式】
准时制对于供应商的管理需求为零库存计划,要求供应商生产物料严格按照订单生产,通过这种方式减少供应商的库存成本及浪费。从整个供应链上面体现出“零库存”的概念。
[编辑本段]
JAVA领域的JIT
JIT Compiler(Just-in-time Compiler) 即时编译
最早的Java建置方案是由一套转译程式(interpreter),将每个Java指令都转译成对等的微处理器指令,并根据转译后的指令先后次序依序执行,由于一个Java指令可能被转译成十几或数十几个对等的微处理器指令,这种模式执行的速度相当缓慢。
针对这个问题,业界首先开发出JIT(just in time)编译器。当Java执行runtime环境时,每遇到一个新的类别(class:类别是Java程式中的功能群组),类别是Java程式中的功能群组-JIT编译器在此时就会针对这个类别进行编译(compile)作业。经过编译后的程式,被优化成相当精简的原生型指令码(native code),这种程式的执行速度相当快。花费少许的编译时间来节省稍后相当长的执行时间,JIT这种设计的确增加不少效率,但是它并未达到最顶尖的效能,因为某些极少执行到的Java指令在编译时所额外花费的时间可能比转译器在执行时的时间还长,针对这些指令而言,整体花费的时间并没有减少。
基于对JIT的经验,业界发展出动态编译器(dynamic compiler),动态编译器仅针对较常被执行的程式码进行编译,其余部分仍使用转译程式来执行。也就是说,动态编译器会研判是否要编译每个类别。动态编译器拥有两项利器:一是转译器,另一则是JIT,它透过智慧机制针对每个类别进行分析,然后决定使用这两种利器的哪一种来达到最佳化的效果。动态编译器针对程式的特性或者是让程式执行几个循环,再根据结果决定是否编译这段程式码。这个决定不见得绝对正确,但从统计数字来看,这个判断的机制正确的机会相当高。事实上,动态编译器会根据“历史资料”做决策,所以程式执行的时间愈长,判断正确的机率就愈高。以整个结果来看,动态编译器产生的程式码执行的速度超越以前的JIT技术,平均速度可提高至50%。
JIT 页面渲染引擎
JIT 页面渲染是 COMSHARP CMS 为了实现网站内容即时更新而开发的页面生成技术,JIT页面渲染引擎直接从数据库获取网站最新内容,瞬间生成页面输出给访问者,并通过 URL 转写技术实现纯静态地址。JIT 页面渲染技术是针对传统 CMS 生成静态 HTML 文件而言。传统 CMS 由于使用脚本代码模板技术,页面生成前,需要将数据库中的页面内容用外部模板进行解析与渲染,导致严重的性能问题,为了解决这个问题,传统 CMS 一般采用生成 HTML 静态文件技术,即,在内容创作完成后,对全站的内容执行一个静态 HTML 文件生成过程,最终,全站内容以静态 HTML 文件的形式存在。
静态 HTML 文件技术最显着的优势是性能出众,然而这种技术最严重的问题在于,用户对站点任何修改与更新,必须首先经过一次全站 HTML 文件重新生成过程,然后才能被访问者看到。根据不同 CMS 产品的性能和站点规模,这个 HTML 生成过程可能长到十几分钟到几十分钟或更长。也有个别 CMS 产品使用触发式页面渲染模式,即内容更新后,并不立即生成 HTML 文件,而是在用户第一次访问该页面时,触发生成该页面的 HTML 文件,这种技术的问题在于,用户第一次访问被更新页面的时候,可能经历非常漫长的等待,因为站点内各个页面之间并非孤立的,他们可能相互引用,虽然访问的只是一个页面,为了对引用页面同步更新,需要重新生成 HTML 文件的页面可能有多个。
JIT 页面渲染如何工作?
下图,是 COMSHARP CMS JIT 渲染引擎与传统 CMS 生成 HTML 静态页面模式对比。可以看出,JIT 渲染引擎直接将网站最新内容从数据库渲染给访问用户,而传统 CMS 的站点内容在到达访问用户之前,首先要经历一个 HTML 的转换过程。
COMSHARP CMS JIT 页面渲染如何实现毫秒级的渲染速度?
COMSHARP CMS 在页面渲染的时候,JIT 引擎可以在数十毫秒的时间内容完整整个页面的生成,这样就保证用户访问的时候,不会因 JIT 渲染造成延迟。事实上,COMSHARP CMS 网站访问速度只取决于服务器带宽,页面生成过程带来的延迟可以忽略不计。
我们有两项技术保证这样的性能:
编译级主题模板
COMSHARP CMS 的编译级主题模板直接内嵌在系统的 DLL 中,主题模板的套用是在运行时(Run Time)完成,这和传统 CMS 的调用脚本代码模板解释运行是截然不同。
调用 .NET 核心函数完成页面渲染(绕开 ASP.NET Webform 生命周期)
我们知道,.NET 框架内核性能是非常出色的,然而,ASP.NET Webform 却以效率低下而受到诟病。ASP.NET Webform 效率低下的主要原因,是微软为了在 Web 上实现类似 Winform 的开发体验而设计的一套机制,这套机制包含一个完整的 ASP.NET Webform 生命周期,Webform 从接受访问请求到输出页面内容,要经历一个周期,这个周期的存在是为了让开发者插入各种处理逻辑,这个 Webform 生命周期的效率并不理想。
为了解决这个问题,COMSHARP CMS 抛弃了 ASP.NET Webform 模式,而是直接调用 .NET 核心函数完成页面的输出,绕过 Webform 的生命周期,显着得提高了 COMSHARP CMS 页面的生成速度,并将速度提升到毫秒级。

‘柒’ C语言编译、连接的各种错误

编译器错误 C2001 错误消息
常数中有换行符
字符串常数不能继续到第二行,除非进行下列操作:
•用反斜杠结束第一行。
•用一个双引号结束第一行上的字符串,并在下一行用另一个双引号开始该字符串。
用 \n 结束第一行是不够的。
编译器错误 C2002 错误消息
无效的宽字符常数
多字节字符常数是非法的。
通过检查下面的可能原因进行修复
1.宽字符常数包含的字节比需要的多。
2.未包括标准头文件 STDDEF.h。
3.宽字符不能与一般字符串连接。
4.宽字符常数之前必须是字符“L”:
编译器错误 C2003 错误消息
应输入“defined id”
标识符必须跟在预处理器关键字之后。
编译器错误 C2004 错误消息
应为“defined(id)”
标识符必须出现在预处理器关键字之后的括号中。
也可能由于为 Visual Studio .NET 2003 进行的编译器一致性工作生成此错误:在预处理器指

令中缺少括号。
如果预处理器指令缺少右括号,则编译器将生成一个错误。
编译器错误 C2005 错误消息
#line 应跟一个行号,却找到“token”
#line 指令后面必须跟行号。
编译器错误 C2006 错误消息
“directive”应输入文件名,却找到“token”
诸如 #include 或 #import 等指令需要文件名。若要解决该错误,请确保 token 是一个有效

文件名。并且将该文件名放在双引号或尖括号中。
编译器错误 C2007 错误消息
#define 语法
#define 后未出现标识符。若要解决该错误,请使用标识符。
编译器错误 C2008 错误消息
“character”: 宏定义中的意外
该字符紧跟在宏名之后。若要解决该错误,宏名之后必须有一个空格。
编译器错误 C2009 错误消息
宏形式“identifier”重复使用
宏定义的形参表多次使用该标识符。宏的参数列表中的标识符必须是唯一的。
编译器错误 C2010 错误消息
“character”: 宏形参表中的意外
该字符在宏定义的形参表中使用不正确。移除该字符以解决该错误。
编译器错误 C2011 错误消息
“identifier”:“type”类型重定义
该标识符已定义为 type 类型。如果多次将某个类型库导入同一个文件,也可能生成 C2011


编译器错误 C2012 错误消息
在“<”之后缺少名称
#include 指令缺少所需的文件名。
编译器错误 C2013 错误消息
缺少“>”
#include 指令缺少右尖括号。添加右尖括号以解决该错误。
编译器错误 C2014 错误消息
预处理器命令必须作为第一个非空白空间启动
预处理器指令的 # 符号必须是非空白行上的第一个字符。
编译器错误 C2015 错误消息
常数中的字符太多
一个字符常数包含的字符多于两个。标准字符常数只能包含一个字符,长字符常数只能包含两

个字符。
转义序列(如 \t)将被转换为单个字符。
当使用 Microsoft 扩展将字符常数转换为整数时,也可能发生 C2015。
编译器错误 C2017 错误消息
非法的转义序列
转义序列(如 \t)出现在字符或字符串常数之外。
当 stringize 运算符与包括转义序列的字符串一起使用时会发生 C2017。
编译器错误 C2018 错误消息
未知字符“hexnumber”
源文件包含一个意外的 ASCII 字符,该字符由其十六进制数标识。若要解决该错误,请移除

该字符。
编译器错误 C2019 错误消息
应找到预处理器指令,却找到“character”
该字符跟在 # 符号的后面,但它不是预处理器指令的第一个字母。
编译器错误 C2020 错误消息
“member”:“class”成员重定义
从基类或结构继承的成员被重定义。不能重定义继承成员,除非它在基类中被声明为 virtual


编译器错误 C2021 错误消息
应输入指数值,而非“character”
用作浮点常数的指数的字符是一个无效数字。确保使用的指数在范围之内。
编译器错误 C2022 错误消息
“number”: 对字符来说太大
字符或字符串常数中跟在反斜杠 (\) 后面的八进制数字太大,不能表示字符。
编译器错误 C2026 错误消息
字符串太大,已截断尾部字符
该字符串的长度超过了 16380 个单字节字符的**。
连接相邻字符串之前,字符串的长度不能超过 16380 个单字节字符。
大约为此长度的一半的 Unicode 字符串也会生成此错误。
编译器错误 C2027 错误消息
使用了未定义类型“type”
类型只有经过定义才能使用。若要解决该错误,请确保在引用类型前已对其进行了完全定义。
有可能声明一个指向已声明但未定义的类型的指针。但是 Visual C++ 不允许引用未定义的类

型。
编译器错误 C2028 错误消息
结构/联合成员必须在结构/联合中
结构或联合成员必须在结构或联合内部声明。
编译器错误 C2030 错误消息
“identifier”: 结构/联合成员重定义
结构或联合将同一标识符用于多个成员。
编译器错误 C2032 错误消息
“identifier”: 函数不能是结构/联合“structorunion”的成员
该结构或联合中的一个成员函数在 C++ 中允许使用而在 C 中却不允许。若要解决该错误,请

编译为 C++ 程序或移除该成员函数。
编译器错误 C2033 错误消息
“identifier”: 位域不能有间接寻址
该位域被声明为指针,这是不允许的。
编译器错误 C2034 错误消息
“identifier”: 位域类型对于位数太小
该位域声明中位的数目超过了基类型的大小。
编译器错误 C2036 错误消息
“identifier”: 未知的大小
对 identifier 的操作需要数据对象的大小,而该大小无法确定。
编译器错误 C2039 错误消息
“identifier1”: 不是“identifier2”的成员
该代码错误调用或引用了结构、类或联合的成员。
编译器错误 C2040 错误消息
“operator”:“identifier1”与“identifier2”的间接寻址级别不同
涉及该运算符的表达式具有不一致的间接寻址级别。
如果两个操作数都是算术的或都是非算术的(如数组或指针),则不用更改就可使用它们。如

果一个操作数是算术的,而另一个不是,则算术运算符将转换为非算术类型。
编译器错误 C2041 错误消息
非法的数字“character”(用于基“number”)
指定的字符不是基(如八进制或十六进制)的有效数字。
编译器错误 C2042 错误消息
signed/unsigned 关键字互相排斥
在单个声明中使用关键字 signed 和 unsigned。
编译器错误 C2043 错误消息
非法 break
break 仅在 do、for、while 或 switch 语句中合法。
编译器错误 C2044 错误消息
非法 continue
continue 仅在 do、for 或 while 语句中合法。
编译器错误 C2045 错误消息
“identifier”: 标签重定义
该标签出现在同一函数中的多条语句之前。
编译器错误 C2046 错误消息
非法的 case
关键字 case 只能出现在 switch 语句中。
编译器错误 C2047 错误消息
非法的 default
关键字 default 仅能出现在 switch 语句中。
编译器错误 C2048 错误消息
默认值多于一个
switch 语句包含多个 default 标签。删除其中一个 default 标签可解决该错误。
编译器错误 C2050 错误消息
switch 表达式不是整型
switch 表达式计算结果为一个非整数值。若要解决该错误,请在 switch 语句中只使用整数

值。
编译器错误 C2051 错误消息
case 表达式不是常数
Case 表达式必须是整数常数。
编译器错误 C2052 错误消息
“type”: 非法的 case 表达式类型
Case 表达式必须是整数常数。
编译器错误 C2053 错误消息
“identifier”: 宽字符串不匹配
宽字符串被分配给了一个不兼容的类型。
编译器错误 C2054 错误消息
在“identifier”之后应输入“(”
该函数标识符用在需要尾部括号的上下文中。
导致该错误的可能原因是省略了复杂初始化上的等号 (=)。
编译器错误 C2055 错误消息
应输入形参表,而不是类型表
函数定义包含参数类型列表而不包含形参表。ANSI C 需要命名的形参,除非它们是 void 或

是省略号 (...)。
编译器错误 C2056 错误消息
非法表达式
表达式因前一个错误而无效。
编译器错误 C2057 错误消息
应输入常数表达式
上下文要求常数表达式,即其值在编译时已知的表达式。
编译器错误 C2058 错误消息
常数表达式不是整型
该上下文需要整数常数表达式。
编译器错误 C2059 错误消息
语法错误 :“token”
该标记导致语法错误。
若要确定原因,则不仅要检查在错误信息中列出的行,还要检查该行上面的行。下面的示例对

声明 j 的行生成了错误信息,而该错误的真正源却出现在其上面的行中。
如果对行的检查没有获得有关可能出现的问题的任何线索,则尝试注释掉在错误信息中列出的

行以及可能出现在该行上面的若干行。
如果该错误信息在紧跟 typedef 变量的符号上出现,则检查该变量是否已在源代码中定义。
如果符号没有计算出任何结果(在使用 /Dsymbol= 编译时可能发生),可能会导致 C2059。
可能收到 C2059 的另一个特定原因是编译在函数的默认参数中指定了结构的应用程序。参数的

默认值必须是一个表达式。初始值设定项列表(如用于初始化结构的初始值设定项列表)不是表达式。其解决方法是定义一

个执行所需初始化的构造函数。
编译器错误 C2060 错误消息
语法错误 : 遇到文件结束
至少还需要一个标记。
编译器错误 C2061 错误消息
语法错误: 标识符“identifier”
编译器发现了不应在此出现的标识符。请确保在使用 identifier 之前对其进行声明。
初始值设定项可能括在了括号中。为避免该问题,请将声明符括在括号中或使其成为 typedef


在编译器将表达式作为类模板参数检测时也可能导致此错误;使用 typename 告诉编译器它是

一个类型。
编译器错误 C2062 错误消息
意外的类型“type”
编译器不需要类型名称。
编译器处理构造函数的参数列表中未定义类型的方式也可能导致 C2062。如果编译器遇到未定

义的(拼错了吗?)类型,则它假定构造函数是一个表达式,并发出 C2062。若要解决此错误,请只使用构造函数参数列表

中的定义类型。
编译器错误 C2063 错误消息
“identifier”: 不是函数
该标识符用作函数,但未声明为函数。
编译器错误 C2064 错误消息
项不会计算为接受“number”个参数的函数
通过表达式调用了函数。该表达式未计算为函数指针。
编译器错误 C2065 错误消息
“identifier”: 未声明的标识符
在可使用变量的类型前必须在声明中指定它。在可以使用函数前必须在声明或原型中指定该函

数使用的参数。
可能的原因:
1.您正在用 C 运行库的调试版本进行编译,在 for 循环中声明标准 C++ 库迭代器变量,然后

尝试在 for 循环范围外使用该迭代器变量。 用 C 运行库的调试版本编译标准 C++ 库代码暗指使用 /Zc:forScope。有关更

多信息,请参见调试迭代器支持。
2.可能正在调用当前不受生成环境支持的 SDK 头文件中的函数。
3.省略必要的包含文件,尤其是在定义 VC_EXTRALEAN、WIN32_LEAN_AND_MEAN 或

WIN32_EXTRA_LEAN 时。这些符号从 windows.h 和 afxv_w32.h 中排除了一些头文件以加快编译。(在 windows.h 和

afxv_w32.h 中查找排除的头文件的最新说明。)
4.标识符名拼写错误。
5.标识符使用了错误的大小写字母。
6.字符串常数的后面缺少右引号。
7.命名空间范围不正确。例如,若要解析 ANSI C++ 标准库函数和运算符,则必须用 using 指

令指定 std 命名空间。下面的示例未能编译,因为 using 指令被注释掉,并且在 std 命名空间中定义了 cout:
编译器错误 C2066 错误消息
转换到函数类型是非法的
在 ANSI C 中,函数指针和数据指针间的转换是非法的。
编译器错误 C2067 错误消息
转换到数组类型是非法的
对象被转换成了数组类型。
编译器错误 C2069 错误消息
“void”项到非“void”项的强制转换
类型 void 不能转换成任何其他类型。
编译器错误 C2070 错误消息
“type”: 非法的 sizeof 操作数
sizeof 运算符需要一个表达式或类型名称。
编译器错误 C2071 错误消息
“identifier”: 非法的存储类
声明 identifier 所用的存储类无效。
编译器错误 C2072 错误消息
“identifier”: 函数的初始化
错误指定了函数初始值设定项。
编译器错误 C2073 错误消息
“identifier”: 部分初始化数组的元素必须有默认构造函数
为用户定义的类型或常数的数组指定的初始值设定项太少。如果没有为数组成员指定明确的初

始值设定项及其对应的构造函数,则必须提供默认的构造函数。
编译器错误 C2074 错误消息
“identifier”:“class-key”初始化需要大括号
在指定的类、结构或联合初始值设定项两边没有大括号。
编译器错误 C2075 错误消息
“identifier”: 数组初始化需要大括号
在指定的数组初始值设定项两边没有大括号。
编译器错误 C2077 错误消息
非标量字段初始值设定项“identifier”
试图用非标量(结构、联合、数组或类)初始化位域。使用整数值或浮点值。
编译器错误 C2078 错误消息
初始值设定项太多
初始值设定项的数目超过了要初始化的对象数。
编译器错误 C2079 错误消息
“identifier”使用未定义的类/结构/联合“name”
指定的标识符是一个未定义的类、结构或联合。
初始化匿名联合时,可能会导致此错误。
编译器错误 C2081 错误消息
“identifier”: 形参表中的名称非法
标识符导致语法错误。
此错误可能是由使用形参表的旧形式导致的。必须在形参表中指定形参的类型。
编译器错误 C2082 错误消息
形参“identifier”的重定义
在函数体中重新声明了函数的形参。若要解决该错误,请移除该重定义。
编译器错误 C2083 错误消息
结构/联合比较非法
结构或联合直接与另一个用户定义的类型进行比较。这是不允许的,除非已经定义了比较运算

符或者存在到标量类型的转换。
编译器错误 C2084 错误消息
函数“function”已有主体
函数已经定义。
在以前的 Visual C++ 版本中,
•编译器将接受解析为同一实际类型的多个模板的专用化,尽管附加的定义将永远不可用。现

在编译器将检测这些多重定义。
•__int32 和 int 已被视为单独的类型。编译器现在将 __int32 作为 int 的同义词处理。这

意味着,如果函数同时在 __int32 和 int 上重载,编译器将检测多个定义,并提供一个错误。
编译器错误 C2085 错误消息
“identifier”: 不在形参表中
该标识符在函数定义中声明而未在形参表中声明。(仅用于 ANSI C)
编译器错误 C2086 错误消息
“identifier”: 重定义
多次定义了该标识符,或者后面的声明与前一个不同。
C2086 也可能是增量编译引用的 C# 程序集的结果。重新生成该 C# 程序集以解决此错误。
编译器错误 C2087 错误消息
“identifier”: 缺少下标
具有多个下标的数组的定义缺少大于 1 的维度的下标值。
编译器错误 C2088 错误消息
“operator”: 对于“class-key”非法
没有为结构或联合定义该运算符。该错误只对 C 代码有效。
编译器错误 C2089 错误消息
“identifier”:“class-key”太大
指定的结构或联合超过 4GB 的**。
编译器错误 C2090 错误消息
函数返回数组
函数不能返回数组。请返回指向数组的指针。
编译器错误 C2091 错误消息
函数返回函数
函数不能返回函数。请返回指向函数的指针。
编译器错误 C2092 错误消息
“array name”数组元素类型不能是函数
不允许使用函数数组。请使用指向函数的指针的数组。
编译器错误 C2093 错误消息
“variable1”: 无法使用自动变量“variable2”的地址初始化
在用 /Za 编译时,程序试图将自动变量的地址用作初始值设定项。
编译器错误 C2094 错误消息
标签“identifier”未定义
goto 语句使用的标签在函数中不存在。
编译器错误 C2095 错误消息
“function”: 实参具有类型“void”:“number”参数
传递给函数的参数为 void 类型,这是不允许的。请改为使用指向 void 的指针 (void *)。
number 指示哪一个参数为 void。
编译器错误 C2097 错误消息
非法的初始化
通过检查下面的可能原因进行修复
1.使用非常数值初始化变量。
2.用长地址初始化短地址。
3.在用 /Za 编译时,用非常数表达式初始化局部结构、联合或数组。
4.用包含逗号运算符的表达式初始化。
5.用既非常数又非符号的表达式初始化。
编译器错误 C2099 错误消息
初始值设定项不是常数
此错误只由 C 编译器发出,而且只对非自动变量发生。编译器在程序的开头对非自动变量进

行初始化,并且用于对这些变量进行初始化的值必须是常数。
由于编译时与运行时的浮点精度环境设置(有关更多信息,请参见 _controlfp_s)可能不同

,因此,编译器无法在 /fp:strict 下对表达式执行常数合并。在这种情况下,也可能发生 C2099。
当常数合并失败时,编译器调用动态初始化,这在 C 中是不允许的。
要解决此错误,请将模块编译为 .cpp 文件或对表达式进行简化。

‘捌’ 如何在 Windows 下编译 OpenSSL

如何在Windows下编译OpenSSL (VS2010使用VC10的cl编译器)
1、安装ActivePerl//初始化的时候,需要用到perl解释器
2、使用VS2010下的Visual Studio 2010 Command Prompt进入控制台模式(这个模式会自动设置各种环境变量)
3、解压缩openssl的包,进入openssl的目录
4、perl configure VC-WIN32
尽量在这个目录下执行该命令,否则找不到Configure文件,或者指定完整的Configure文件路径。
5、ms\do_ms.bat
解压目录下执行ms\do_ms.bat命令
6、nmake -f ms\ntdll.mak
7、nmake -f ms\nt.mak

编译后
在openssl解压目录下执行,完成编译后。输出的文件在out32dll (6), out32 (7)里面,包括应用程序的可执行文件、lib文件和dll文件

注意:在运行第五步时,cl编译器会抱怨说.\crypto\des\enc_read.c文件的read是The POSIX name for this item is deprecated(不被推荐的),建议使用_read。呵呵,我可不想将OpenSSL中的所有的read函数修改为_read。再看cl的错误代码error C2220,于是上MSDN上查找:
warning treated as error - no object file generated
/WX tells the compiler to treat all warnings as errors. Since an error occurred, no object or executable file was generated.
是由于设置了/WX选项,将所有的警告都作为错误对待,所以。。。

于是打开OpenSSL目录下的MS目录下的ntdll.mak文件,将CFLAG的/WX选项去掉,存盘。。。
继续执行nmake -f ms\ntdll.mak

=================================
一、编译并安装OpenSSL
1、按照标准步骤从源代码编译安装OpenSSL
在编译OpenSSL前,需要正确安装Perl,因为在编译OpenSSL时需要使用到该程序。

下载最新版本的Perl然后安装之。
下载最新版本的OpenSSL

然后将源码解压缩到某个目录(如 C:\openssl-0.9.8j)中。

进入openssl源码目录。
cd c:\openssl-1.0.1e

以下为参照该目录下的文件INSTALL.W32的执行过程:
运行configure:
perl Configure VC-WIN32
创建Makefile文件:
ms\do_ms.bat

编译动态库:
nmake -f ms\ntdll.mak
编译静态库:
nmake -f ms\nt.mak
测试动态库:
nmake -f ms\ntdll.mak test
测试静态库:
nmake -f ms\nt.mak test
安装动态库:
nmake -f ms\ntdll.mak install
安装静态库:
nmake -f ms\nt.mak install
清除上次动态库的编译,以便重新编译:
nmake -f ms\ntdll.mak clean
清除上次静态库的编译,以便重新编译:
nmake -f ms\nt.mak clean
2、如果嫌麻烦,不想编译,可以直接用别人做好的windows OpenSSL 安装包(我用的是0.9.8j版),
可以下载 OpenSSL for Windows,直接安装。
P.S. OpenSSL for Windows 的源代码有一些数据类型和VC6的编译器不兼容,我发现的不兼容的数据类型如下:
在OpenSSL安装目录的下的include/bn.h文件中,将
#define BN_ULLONG unsigned long long
#define BN_ULONG unsigned long long
#define BN_LONG long long
分别修改为:
#define BN_ULLONG ULONGLONG
#define BN_ULONG ULONGLONG
#define BN_LONG LONGLONG
否则,会出现编译错误。

二、使用OpenSSL
在VC中配置使用以上的函数库:
点击菜单:Tools -> Options,弹出对话框"Options",在该对话框中选择"Directories"标签。
在"Show directories for:"的"Include files"选项中新增目录"C:\openssl\include";
"Library files"选择中新增目录"C:\openssl\lib"。
然后在需要链接OpenSSL函数库的工程中加入如下两句:
#pragma comment(lib, "ssleay32.lib")
#pragma comment(lib, "libeay32.lib")
其作用是将OpenSSL所需的库导入工程中。
三、问题
我在链接OpenSSL的静态函数库时遇到类似以下的问题:
Linking...
msvcrt.lib(MSVCRT.dll) : error LNK2005: _strchr already defined in libcmtd.lib(strchr.obj)
...

这是由于OpenSSL的静态函数库使用的是了VC的多线程DLL的Release版本,而我的程序使用了多线程静态链接的Release版本。
调整OpenSSL的静态函数库使用的库函数版本即可,调整过程如下:

编辑文件 ms\nt.mak,将该文件第19行
"CFLAG= /MD /Ox /O2 /Ob2 /W3 /WX /Gs0 /GF /Gy /nologo -DOPENSSL_SYSNAME_WIN32 -DWIN32_LEAN_AND_MEAN -DL_ENDIAN -DDSO_WIN32 -D_CRT_SECURE_NO_DEPRECATE -
D_CRT_NONSTDC_NO_DEPRECATE /Fdout32 -DOPENSSL_NO_CAMELLIA -DOPENSSL_NO_SEED -DOPENSSL_NO_RC5 -DOPENSSL_NO_MDC2 -DOPENSSL_NO_TLSEXT -DOPENSSL_NO_KRB5 -
DOPENSSL_NO_DYNAMIC_ENGINE"
中的"/MD"修改为"/MT"。然后重新编译安装OpenSSL即可。
四、附录:在VC中对C/C++ 运行时库不同版本编译指令说明
《在VC中对C/C++ 运行时库不同版本编译指令说明》一文中详细介绍了连接不同版本库的编译指令如下:
C Runtime Library:
/MD MSVCRT.LIB 多线程DLL的Release版本
/MDd MSVCRTD.LIB 多线程DLL的Debug版本
/MT LIBCMT.LIB 多线程静态链接的Release版本
/MTd LIBCMTD.LIB 多线程静态链接的Debug版本
/clr MSVCMRT.LIB 托管代码和非托管代码混合
/clr:pure MSVCURT.LIB 纯托管代码
C++ Standard Library:
/MD MSVCPRT.LIB 多线程DLL的Release版本
/MDd MSVCPRTD.LIB 多线程DLL的Debug版本
/MT LIBCPMT.LIB 多线程静态链接的Release版本
/MTd LIBCPMTD.LIB 多线程静态链接的Debug版本
===============================================

一 配置编译参数
配置编译参数是进行OpenSSL编译的第一步,这一步可以确定系统的环境,使用什么编译器,默认安装路径以及其他一些选项.步骤如下:
1.安装perl:下载ActivePerl-5.8.8.822-MSWin32-x86-280952.msi,然后点击msi文件进行安装!

2..配置编译参数:下载openssl-1.0.1e.tar.gz,解压.
vc:首先在C:\Program Files\Microsoft Visual Studio .NET 2010\VC10\bin\目录下执行vcvars32.bat,然后在解压后的openssl-1.0.1e目录,执行命令配置编译参数:perl Configure VC-WIN32
bc:在解压后的openssl-0.9.8g目录下执行:perl Configure BC-32

二 生成批处理文件
在使用configure脚本配置好的编译参数后,就可以使用批处理命令来生成编译脚本.生成编译脚本根据采用编译器的不同通常使用不同的批处理文件.就目前来说,使用vc编译的时候有三种选择:do_ms,do_masm和do_nasm来创建一系列编译脚本文件,即.mak脚本.步骤如下:
vc:在openssl-1.0.1e目录下,执行命令来批处理文件:do_ms,do_masm和do_nasm
bc:1.下载nsm09839.zip微软汇编编译器,解压,拷贝到c:/windows目录下,修改名称为nasmw.exe;2.在openssl-1.0.1e目录下,执行命令来批处理文件:ms\do_nasm

三 代码编译
vc:
完成上面步骤后,可以看到两个关键脚本文件:nt.mak和ntdll.mak.如果我们需要编译后的OpenSSL库是支持动态DLL形式的,那么应该使用ntddll.mak文件进行编译,这样编译完成我们会得到四个与OpenSSL的API库有关文件:ssleay32.lib,libeay32.lib,ssleay32.dll和libeay32.dll.执行的编译命令形式如下:nmake -f ms\ntdll.mak
如果不希望以动态库的形式使用OpenSSL,那么可以使用nt.mak文件进行编译.这样编译后使用OpenSSL的时候,回直接将代码链接进我们的程序里面.执行命令如下:nmake -f ms\nt.mak
bc:执行命令来完成代码编译:make -f ms\bcb.mak
四 ELSE
1)
测试动态库:
nmake -f ms\ntdll.mak test
测试静态库:
nmake -f ms\nt.mak test

安装动态库:
nmake -f ms\ntdll.mak install
安装静态库:
nmake -f ms\nt.mak install

清除上次动态库的编译,以便重新编译:
nmake -f ms\ntdll.mak clean
清除上次静态库的编译,以便重新编译:
nmake -f ms\nt.mak clean

2)
使用OpenSSL
在VC中配置使用以上的函数库:
点击菜单:Tools -> Options,弹出对话框"Options",在该对话框中选择"Directories"标签。
在"Show directories for:"的"Include files"选项中新增目录"C:\openssl\include";"Library files"选择中新增目录"C:\openssl\lib"。
然后在需要链接OpenSSL函数库的工程中编译时加入"libeay32.lib"就可以了。

阅读全文

与lean编译详细教程相关的资料

热点内容
房屋中介网站源码 浏览:29
命运格数算法 浏览:852
ets3编程 浏览:730
怎么制作音乐相册的文件夹 浏览:566
宁夏重加密硅灰用法 浏览:231
70个4相乘的简便算法 浏览:291
安卓手机没有机身存储了怎么办 浏览:314
输入法文件夹不能用 浏览:83
发单买多大的云服务器 浏览:331
特价云服务器如何注册 浏览:296
安卓手机账户忘记密码怎么解锁 浏览:821
如何用健身app确定一个特工 浏览:911
多级压缩的原理 浏览:864
java项目开发案例视频 浏览:70
文件夹快速查找表格不同内容 浏览:493
合并排序算法java 浏览:920
如何将文件夹删除的部分恢复 浏览:808
eco为什么连接不上服务器 浏览:294
查看linux的命令是 浏览:12
苹果邮件服务器地址 浏览:343