Ⅰ 什么是有监督学习和无监督学习
监督学习
英汉词典解释
监督学习词性解释
【计】 supervised learning
supervised learning
supervised learning
监督学习
利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。正如人们通过已知病例学习诊断技术那样,计算机要通过学习才能具有识别各种事物和现象的能力。用来进行学习的材料就是与被识别对象属于同类的有限数量样本。监督学习中在给予计算机学习样本的同时,还告诉计算各个样本所属的类别。若所给的学习样本不带有类别信息,就是无监督学习。任何一种学习都有一定的目的,对于模式识别来说,就是要通过有限数量样本的学习,使分类器在对无限多个模式进行分类时所产生的错误概率最小。
不同设计方法的分类器有不同的学习算法。对于贝叶斯分类器来说,就是用学习样本估计特征向量的类条件概率密度函数。在已知类条件概率密度函数形式的条件下,用给定的独立和随机获取的样本集,根据最大似然法或贝叶斯学习估计出类条件概率密度函数的参数。例如,假定模式的特征向量服从正态分布,样本的平均特征向量和样本协方差矩阵就是正态分布的均值向量和协方差矩阵的最大似然估计。在类条件概率密度函数的形式未知的情况下,有各种非参数方法,用学习样本对类条件概率密度函数进行估计。在分类决策规则用判别函数表示的一般情况下,可以确定一个学习目标,例如使分类器对所给样本进行分类的结果尽可能与“教师”所给的类别一致,然后用迭代优化算法求取判别函数中的参数值。
在无监督学习的情况下,用全部学习样本可以估计混合概率密度函数,若认为每一模式类的概率密度函数只有一个极大值,则可以根据混合概率密度函数的形状求出用来把各类分开的分界面。
Ⅱ 目标检测算法是什么
目标检测算法是先通过训练集学习一个分类器,然后在测试图像中以不同scale的窗口滑动扫描整个图像;每次扫描做一下分类,判断一下当前的这个窗口是否为要检测的目标。检测算法的核心是分类,分类的核心一个是用什么特征,一个是用哪种分类器。
(2)目标检测算法无监督扩展阅读:
目标检测算法可以分为:
1、背景建模法,包含时间平均模型、混合高斯模型、动态纹理背景、PCA模型、时一空联合分布背景模型
2、点检测法,包含Moravec检测器、Harris检测器 、仿射不变点检测、S IFT
3、图像分割法,包含Mean Shift方法 、Graph-cut方法、Active Contours方法
4、聚类分析法,包含支持向量机、神经网络、Adaptive Boosting
5、运动矢量场法,包含基于运动矢量场的方法
Ⅲ 什么是无监督学习
无监督学习目标
目标是不告诉计算机怎么做,而是让它(计算机)学会如何做某事。无监督学习一般有两种思维方式。第一个思路不是为代理人明确地分类,而是在成功的时候使用某种奖励制度。应该指出的是,这种培训通常放在决策的框架内,因为它的目标不是产生分类系统,而是决定最大回报。这个想法是对现实世界的一个很好的概括,而代理可以激励正确的行为并惩罚其他行为。
第二类无监督学习称为聚类。这种学习的目的不是最大化效用函数,而是寻找训练数据中的近似点。聚合常常找到与假设相匹配的很好的视觉分类。例如,基于人口统计的聚集个体可能在一个群体中形成丰富的聚集,以及其他贫困聚集。
Ⅳ 半监督学习和无监督学习的区别
无监督与半监督学习的区别在于一个无教学值,一个有教学值。但是,个人认为他们的区别在于无监督学习一般是采用聚簇等算法来分类不同样本。而半监督学习一般是利用教学值与实际输出值产生的误差,进行误差反向传播修改权值来完成网络修正的。但是无监督学习没有反向传播修改权值操作。
无监督学习:训练样本的标记信息未知,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,此类学习任务中研究最多、应用最广的是"聚类" ,其他无监督算法还有:密度估计、异常检测等。
半监督学习:训练集同时包含有标记样本数据和未标记样本数据,不需要人工干预,让学习器不依赖外界交互、自动地利用未标记样本来提升学习性能。
想要了解更多有关半监督学习和无监督学习的信息,可以了解一下CDA数据分析师的课程。CDA证书已得到中国成人教育协会的认可和工信部认可,考过CDA认证考生可以得到经管之家CDA数据分析师中文证书,CDAINSTITUTE英文证书以及可额外申请工信部数据分析师证书。帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。
Ⅳ 基于无监督生成模型的图像异常定位方法研究
摘要 亲亲,我们目前这边查询到的资料是异常检测,简单地说就是让学习到的模型能够区分开正常样本和异常样本。比如在医学领域,根据CT影像学习的癌症检测模型也可以说是异常检测,正常样本就是正常人地CT影像,异常样本就是癌症患者的CT影像。再比如在智能监控领域,要求模型能够检测高速公路上出现的影响通行的阻挡物,那么这也是异常检测。总之,异常检测就是根据任务的需求定义好正常样本(比如正常人的CT影响,干净的路面),并 在测试阶段能够检测出异常样本(可疑的癌症患者,公路上的阻碍物)。
Ⅵ 机器学习非监督机器学习算法有哪些
非监督机器学习可以分为以下几类
(1)聚类:聚类学习问题指的是我们想在数据中发现内在的分组,比如以购买行为对顾客进行分组。其又分为K-均值聚类、谱聚类、DBSCAN聚类、模糊聚类、GMM聚类、层次聚类等。
(2)关联:关联问题学习问题指的是我们想发现数据的各部分之间的联系和规则,例如购买X物品的顾客也喜欢购买Y物品。如:Apriori算法。
非监督学习,该算法没有任何目标/结果变量要预测/估计。这个算法将种群聚类到不同的分组中,例如被广泛用于将用户分到不同的用户组从而对不同的用户组进行特定的干预。非监督学习的例子有:关联算法和k均值算法。
想要学习了解更多机器学习非监督机器学习的知识,推荐CDA数据分析师课程。CDA数据分析师是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,通过 CDA 认证考试者可获得 CDA 数据分析师中英文认证证书。点击预约免费试听课。
Ⅶ 有监督学习和无监督学习算法怎么理解
在判断是有监督学习还是在无监督学习上,我们可以具体是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。
什么是学习(learning)?
一个成语就可概括:举一反三。机器学习的思路有点类似高考一套套做模拟试题,从而熟悉各种题型,能够面对陌生的问题时算出答案。
简而言之,机器学习就是看能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考题目),而这种根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。
常用的无监督学习算法主要有三种:聚类、离散点检测和降维,包括主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。
从原理上来说,PCA等数据降维算法同样适用于深度学习,但是这些数据降维方法复杂度较高,所以现在深度学习中采用的无监督学习方法通常采用较为简单的算法和直观的评价标准。比如无监督学习中最常用且典型方法聚类。
在无监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。这时就需要某种算法帮助我们寻找一种结构。
监督学习(supervised learning),是从给定的有标注的训练数据集中学习出一个函数(模型参数),当新的数据到来时可以根据这个函数预测结果。 常见任务包括分类与回归。
无监督学习方法在寻找数据集中的规律性,这种规律性并不一定要达到划分数据集的目的,也就是说不一定要“分类”。比如,一组颜色各异的积木,它可以按形状为维度来分类,也可以按颜色为维度来分类。(这一点比监督学习方法的用途要广。如分析一堆数据的主分量,或分析数据集有什么特点都可以归于无监督学习方法的范畴) ,而有监督学习则是通过已经有的有标签的数据集去训练得到一个最优模型。
Ⅷ 无监督学习比如简单的聚类分析真的是“学习”吗
聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里。分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchicalclustering)方法。这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。(3)多维等级分析(,MDS)是一种在二维Euclidean“距离”中显示实验样本相关的大约程度。(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。聚类方法有两个显着的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据。几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类。但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同。结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息。为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式。对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界)。最终,将需要经验可信度通过序列比较来指导聚类解释。第二个局限由线性相关产生。上述的所有聚类方法分析的仅是简单的一对一的关系。因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点。从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。就数据挖掘功能而言,聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他数据挖掘任务(如分类、关联规则)的预处理步骤。数据挖掘领域主要研究面向大型数据库、数据仓库的高效实用的聚类分析算法。聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。这些算法可以被分为划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。1划分方法(PAM:PArtitioningmethod)首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:k-means,k-medoids,CLARA(ClusteringLARgeApplication),CLARANS().FCM2层次方法(hierarchicalmethod)创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:第一个是;BIRCH()方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。第二个是CURE()方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。第三个是ROCK方法,它利用聚类间的连接进行聚类合并。最后一个CHEMALOEN,它则是在层次聚类时构造动态模型。3基于密度方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:DBSCAN(Densit-):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。OPTICS():并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。4基于网格方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。STING(STatisticalINformationGrid)就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。CLIQUE(ClusteringInQUEst)和Wave-Cluster则是一个将基于网格与基于密度相结合的方法。5基于模型方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.
Ⅸ yolo算法是什么
Yolo是一种目标检测算法。
目标检测的任务是从图片中找出物体并给出其类别和位置,对于单张图片,输出为图片中包含的N个物体的每个物体的中心位置(x,y)、宽(w)、高(h)以及其类别。
Yolo的预测基于整个图片,一次性输出所有检测到的目标信号,包括其类别和位置。Yolo首先将图片分割为sxs个相同大小的grid。
介绍
Yolo只要求grid中识别的物体的中心必须在这个grid内(具体来说,若某个目标的中心点位于一个grid内,该grid输出该目标类别的概率为1,所有其他grid对该目标预测概率设置为0)。
实现方法:让sxs个框每个都预测出B个boungding box,bounding box有5个量,分别为物体的x,y,h,w和预测的置信度;每个grid预测B个bounding box和物体类别,类别使用one-hot表示。
Ⅹ 非监督学习有哪些
在机器学习,无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。这区别于监督学习和强化学习无监督学习。
无监督学习是密切相关的统计数据密度估计的问题。然而无监督学习还包括寻求,总结和解释数据的主要特点等诸多技术。在无监督学习使用的许多方法是基于用于处理数据的数据挖掘方法。
非监督学习对应的是监督学习。
聚类(例如,混合模型,层次聚类),
隐马尔可夫模型,
盲目的信号分离使用特征提取的技术降维(例如,主成分分析,独立分量分析,非负矩阵分解,奇异值分解)。
在神经网络模型,自组织映射(SOM)和自适应共振理论(艺术)是常用的无监督学习算法。SOM是一个地形组织附近的位置在地图上代表输入有相似属性。艺术模型允许集群的数量随问题规模和让用户控制之间的相似程度相同的集群成员通过一个用户定义的常数称为警戒参数。艺术网络也用于许多模式识别任务,如自动目标识别和地震信号处理。艺术的第一个版本是"ART1",由木匠和Grossberg(1988)。